DOI QR코드

DOI QR Code

Developing a Dental Unit Waterline Model Using General Laboratory Equipments

실험실 일반 장비를 이용한 치과용 유니트 수관 모델 개발

  • Yoon, Hye Young (Department of Oral Microbiology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University) ;
  • Lee, Si Young (Department of Oral Microbiology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University)
  • 윤혜영 (강릉원주대학교 치과대학 구강미생물학교실 및 구강과학연구소) ;
  • 이시영 (강릉원주대학교 치과대학 구강미생물학교실 및 구강과학연구소)
  • Received : 2016.06.17
  • Accepted : 2016.07.12
  • Published : 2016.08.31

Abstract

Water supplied through dental unit waterlines (DUWLs) has been shown to contain high number of bacteria. To reduce the contamination of DUWLs, it is essential to develop effective disinfectants. It is, however, difficulty to obtain proper DUWL samples for studies. The purpose of this study was to establish a simple laboratory model for reproducing DUWL biofilms. The bacteria obtained from DUWLs were cultured in R2A liquid medium for 10 days, and then stored at $-70^{\circ}C$. This stock was inoculated into R2A liquid medium and incubated in batch mode. After 5 days of culturing, it was inoculated into the biofilm formation model developed in this study. Our biofilm formation model comprised of a beaker containing R2A liquid medium and five glass rods attached to DUWL polyurethane tubing. Biofilm was allowed to form on the stir plate and the medium was replaced every 2 days. After 4 days of biofilm formation in the laboratory model, biofilm thickness, morphological characteristics and distribution of the composing bacteria were examined by confocal laser microscopy and scanning electron microscopy. The mean of biofilm accumulation was $4.68{\times}10^4$ colony forming unit/$cm^2$ and its thickness was $10{\sim}14{\mu}m$. In our laboratory model, thick bacterial lumps were observed in some parts of the tubing. To test the suitability of this biofilm model system, the effectiveness of disinfectants such as sodium hypochlorite, hydrogen peroxide, and chlorhexidine, was examined by their application to the biofilm formed in our model. Lower concentrations of disinfectants were less effective in reducing the count of bacteria constituting the biofilm. These results showed that our DUWL biofilm laboratory model was appropriate for comparison of disinfectant effects. Our laboratory model is expected to be useful for various other purposes in further studies.

DUWL에 형성된 바이오필름 제거를 위한 효과적인 소독제의 제시와 새로운 소독제의 개발을 위해 DUWL의 실험실 모델의 확립이 필요하다. 따라서 본 연구에서는 실험실에서 쉽게 구할 수 있는 장비들로 실험실 모델을 제작하여, DUWL 바이오필름을 재현하기 위한 새로운 실험실 모델을 확립하고자 하였다. 사용 중인 DUWL을 통해 수집한 물에서 세균을 모은 후, R2A 액체 배지에서 10일 동안 배양시켰다. 10일 배양시킨 세균액을 $-70^{\circ}C$에 보관하여 사용하였다. $-70^{\circ}C$에 저장한 세균 stock은 R2A 액체배지에 5일 동안 회분 배양시킨 배양액은 모델에서 바이오필름을 형성시키기 위해 사용되었다. 바이오필름 형성 모델은 실험실 내 장비인 1 L 비커에 폴리우레탄 튜빙이 부착된 20 cm 유리막대를 꽂아서 제작하였다. 모델을 멸균시킨 후 R2A 액체배지 300 ml와 5일 동안 회분 배양한 세균액 50 ml을 넣고 stir plate에서 $25^{\circ}C$로 배양시켰다. 배양 2일마다 R2A 액체배지를 교체해주었다. 임상의 상황과 유사한 조건에서 바이오필름을 형성하기 위해 와류상태는 오전 9시에서 오후 6시까지 적용시키고 그 이외의 시간에는(약 15시간) 정체상태로 배양시켰다. 바이오필름 형성은 4일 동안 진행하였으며, 그 후 바이오필름의 두께, 바이오필름을 구성하는 세균의 분포 및 형태학적 특징을 SEM과 CLSM을 사용하여 분석하였다. 4일 바이오필름 형성 후 평균 바이오필름 축적량은 $4.68{\times}10^4CFU/cm^2$였고, 바이오필름의 두께는 $10{\sim}14{\mu}m$였다. 또한 바이오필름을 구성하는 세균들이 부분적으로 응집되어 덩어리를 이루고 있는 양상을 확인할 수 있었다. 본 연구에서 제작한 실험실 모델을 대상으로 차아염소산나트륨, 과산화수소 그리고 클로르헥시딘과 같은 소독제의 효과를 확인하였다. 그 결과 적용된 소독제의 농도가 낮을수록 바이오필름 내 생존한 세균의 수가 많았다. 따라서 우리의 실험실 모델에서 형성시킨 바이오필름은 소독제의 효과를 비교하기 위해 적절한 것으로 판단된다. 우리의 실험실 모델은 향후 DUWL 소독을 위한 새로운 방법의 개발을 위해 유용하게 사용될 것으로 예상된다.

Keywords

References

  1. Williams JF, Johnston AM, Johnson B, Huntington MK, Mackenzie CD: Microbial contamination of dental unit waterlines: prevalence, intensity and microbiological characteristics. J Am Dent Assoc 124: 59-65, 1993.
  2. Barbeau J, Tanguay R, Faucher E, et al.: Multiparametric analysis of waterline contamination in dental units. Appl Environ Microbiol 62: 3954-3959, 1996.
  3. Lee BM, Kim CW, Kim YS: A study on the microbial contamination of dental unit and ultrasonic scaler. J Korean Acad Prosthodont 36: 64-80, 1998.
  4. Meiller TF, Depaola LG, Kelley JI, Baqui AA, Turng BF, Falkler WA: Dental unit waterlines: biofilms, disinfection and recurrence. J Am Dent Assoc 130: 65-72, 1999. https://doi.org/10.14219/jada.archive.1999.0030
  5. Walker JT, Bradshaw DJ, Bennett AM, Fulford MR, Martin MV, Marsh PD: Microbial biofilm formation and contamination of dental-unit water systems in general dental practice. Appl Environ Microbiol 66: 3363-3367, 2000. https://doi.org/10.1128/AEM.66.8.3363-3367.2000
  6. Walker JT, Bradshaw DJ, Finney M, et al.: Microbiological evaluation of dental unit water systems in general dental practice in Europe. Eur J Oral Sci 112: 412-418, 2004. https://doi.org/10.1111/j.1600-0722.2004.00151.x
  7. Yoon HY, Lee SY: Bacterial contamination of dental unit water systems in a student clinical simulation laboratory of college of dentistry. J Dent Hyg Sci 2: 232-237, 2015.
  8. Williams HN, Paszko-Kolva C, Shahamat M, Palmer C, Pettis C, Kelley J: Molecular techniques reveal high prevalence of legionella in dental units. J Am Dent Assoc 127: 1188-1193, 1996. https://doi.org/10.14219/jada.archive.1996.0410
  9. Singh R, Stine OC, Smith DL, Spitznagel JK Jr, Labib ME, Williams HN: Microbial diversity of biofilms in dental unit water systems. Appl Environ Microbiol 69: 3412-3420, 2003. https://doi.org/10.1128/AEM.69.6.3412-3420.2003
  10. Porteous NB, Redding SW, Jorgensen JH: Isolation of non-tuberculosis mycobacteria in treated dental unit waterlines. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 98: 40-44, 2004. https://doi.org/10.1016/j.tripleo.2004.02.006
  11. Dutil S, Veillette M, Meriaux A, Lazure L, Barbeau J, Duchaine C: Aerosolization of mycobacteria and legionellae during dental treatment: low exposure despite dental unit contamination. Environ Microbiol 9: 2836-2843, 2007. https://doi.org/10.1111/j.1462-2920.2007.01395.x
  12. Al-Hiyasat AS, Ma'ayeh SY, Hindiyeh MY, Khader YS: The presence of Pseudomonas aeruginosa in the dental unit waterline systems of teaching clinics. Int J Dent Hyg 5: 36-44, 2007. https://doi.org/10.1111/j.1601-5037.2007.00221.x
  13. Kohn WG, Harte JA, Malvitz DM, et al.: Guidelines for infection control in dental health care settings-2003. J Am Dent Assoc 135: 33-47, 2004. https://doi.org/10.14219/jada.archive.2004.0019
  14. American Dental Association Council on Scientific Affairs. Dental unit waterlines: approaching the year 2000. J Am Dent Assoc 130: 1653-1664, 1999.
  15. Fiehn NE, Larsen T: The effect of drying dental unit waterline biofilms on the bacterial load of dental unit water. Int Dent J 52: 251-254, 2002. https://doi.org/10.1111/j.1875-595X.2002.tb00626.x
  16. Cobb CM, Martel CR, McKnight SA 3rd, Pasley-Mowry C, Ferguson BL, Williams K: How does time-dependent dental unit waterline flushing affect planktonic bacteria levels? J Dent Educ 66: 549-555, 2002.
  17. Walker JT, Bradshaw DJ, Fulford MR, Marsh PD: Microbiological evaluation of a range of disinfectant products to control mixed-species biofilm contamination in a laboratory model of a dental unit water system. Appl Environ Microbiol 69: 3327-3332, 2003. https://doi.org/10.1128/AEM.69.6.3327-3332.2003
  18. Copenhagen TL: The effect of ultrafiltration on the quality of water from dental units. Int Dent J 56: 352-355, 2006. https://doi.org/10.1111/j.1875-595X.2006.tb00340.x
  19. Walker JT, Marsh PD: Microbial biofilm formation in DUWS and their control using disinfectants. J Dent 35: 721-730, 2007. https://doi.org/10.1016/j.jdent.2007.07.005
  20. Karpay RI, Plamondon TJ, Mills SE, Dove SB: Combining periodic and continuous sodium hypochlorite treatment to control biofilms in dental unit water systems. J Am Dent Assoc 130: 957-965, 1999. https://doi.org/10.14219/jada.archive.1999.0336
  21. Smith AJ, Bagg J, Hood J: Use of chlorine dioxide to disinfect dental unit waterlines. J Hosp Infect 49: 285-288, 2001. https://doi.org/10.1053/jhin.2001.1085
  22. Kettering JD, Munoz-Viveros CA, Stephens JA, Naylor WP, Zhang W: Reducing bacterial counts in dental unit waterlines: distilled water vs. antimicrobial agents. J Calif Dent Assoc 30: 735-741, 2002.
  23. Schel AJ, Marsh PD, Bradshaw DJ, et al.: Comparison of the efficacies of disinfectants to control microbial contamination in dental unit water systems in general dental practices across the European union. Appl Environ Microbiol 72: 1380-1387, 2006. https://doi.org/10.1128/AEM.72.2.1380-1387.2006
  24. Lin SM, Svoboda KK, Giletto A, Seibert J, Puttaiah R: Effects of hydrogen peroxide on dental unit biofilms and treatment water contamination. Eur J Dent 5: 47-59, 2011.
  25. O'Donnell MJ, Boyle MA, Russell RJ, Coleman DC: Management of dental unit waterline biofilms in the 21st century. Future Microbiol 6: 1209-1226, 2011. https://doi.org/10.2217/fmb.11.104
  26. Williams HN, Baer ML, Kelley JI: Contribution of biofilm bacteria to the contamination of the dental unit water supply. J Am Dent Assoc 126: 1255-1260, 1995. https://doi.org/10.14219/jada.archive.1995.0360
  27. Yabune T, Imazato S, Ebisu S: Assessment of inhibitory effects of fluoride-coated tubes on biofilm formation by using the in vitro dental unit waterline biofilm model. Appl Environ Microbiol 74: 5958-5964, 2008. https://doi.org/10.1128/AEM.00610-08
  28. Yabune T, Imazato S, Ebisu S: Inhibitory effect of PVDF tubes on biofilm formation in dental unit waterlines. Dent Mater 21: 780-786, 2005. https://doi.org/10.1016/j.dental.2005.01.016

Cited by

  1. Well-Plate를 사용한 치과용 유니트 수관 바이오필름 모델 확립 vol.17, pp.4, 2016, https://doi.org/10.17135/jdhs.2017.17.4.283