DOI QR코드

DOI QR Code

Comparison of Fecal Microbiota of Mongolian and Thoroughbred Horses by High-throughput Sequencing of the V4 Region of the 16S rRNA Gene

  • Zhao, Yiping (College of Animal Science, Inner Mongolia Agricultural University, Inner Mongolia Mongolian Horse Genetic Resources Protection and Industrial Engineering Laboratory) ;
  • Li, Bei (College of Animal Science, Inner Mongolia Agricultural University, Inner Mongolia Mongolian Horse Genetic Resources Protection and Industrial Engineering Laboratory) ;
  • Bai, Dongyi (College of Animal Science, Inner Mongolia Agricultural University, Inner Mongolia Mongolian Horse Genetic Resources Protection and Industrial Engineering Laboratory) ;
  • Huang, Jinlong (College of Animal Science, Inner Mongolia Agricultural University, Inner Mongolia Mongolian Horse Genetic Resources Protection and Industrial Engineering Laboratory) ;
  • Shiraigo, Wunierfu (College of Animal Science, Inner Mongolia Agricultural University, Inner Mongolia Mongolian Horse Genetic Resources Protection and Industrial Engineering Laboratory) ;
  • Yang, Lihua (College of Animal Science, Inner Mongolia Agricultural University, Inner Mongolia Mongolian Horse Genetic Resources Protection and Industrial Engineering Laboratory) ;
  • Zhao, Qinan (College of Animal Science, Inner Mongolia Agricultural University, Inner Mongolia Mongolian Horse Genetic Resources Protection and Industrial Engineering Laboratory) ;
  • Ren, Xiujuan (College of Animal Science, Inner Mongolia Agricultural University, Inner Mongolia Mongolian Horse Genetic Resources Protection and Industrial Engineering Laboratory) ;
  • Wu, Jing (College of Animal Science, Inner Mongolia Agricultural University, Inner Mongolia Mongolian Horse Genetic Resources Protection and Industrial Engineering Laboratory) ;
  • Bao, Wuyundalai (College of Animal Science, Inner Mongolia Agricultural University, Inner Mongolia Mongolian Horse Genetic Resources Protection and Industrial Engineering Laboratory) ;
  • Dugarjaviin, Manglai (College of Animal Science, Inner Mongolia Agricultural University, Inner Mongolia Mongolian Horse Genetic Resources Protection and Industrial Engineering Laboratory)
  • Received : 2015.07.10
  • Accepted : 2015.12.01
  • Published : 2016.09.01

Abstract

The hindgut of horses is an anaerobic fermentative chamber for a complex and dynamic microbial population, which plays a critical role in health and energy requirements. Research on the gut microbiota of Mongolian horses has not been reported until now as far as we know. Mongolian horse is a major local breed in China. We performed high-throughput sequencing of the 16S rRNA genes V4 hypervariable regions from gut fecal material to characterize the gut microbiota of Mongolian horses and compare them to the microbiota in Thoroughbred horses. Fourteen Mongolian and 19 Thoroughbred horses were used in the study. A total of 593,678 sequence reads were obtained from 33 samples analyzed, which were found to belong to 16 phyla and 75 genera. The bacterial community compositions were similar for the two breeds. Firmicutes (56% in Mongolian horses and 53% in Thoroughbred horses) and Bacteroidetes (33% and 32% respectively) were the most abundant and predominant phyla followed by Spirochaete, Verrucomicrobia, Proteobacteria, and Fibrobacteres. Of these 16 phyla, five (Synergistetes, Planctomycetes, Proteobacteria, TM7, and Chloroflexi) were significantly different (p<0.05) between the two breeds. At the genus level, Treponema was the most abundant genus (43% in Mongolian horses vs 29% in Thoroughbred horses), followed by Ruminococcus, Roseburia, Pseudobutyrivibrio, and Anaeroplasma, which were detected in higher distribution proportion in Mongolian horses than in Thoroughbred horses. In contrast, Oscillibacter, Fibrobacter, Methanocorpusculum, and Succinivibrio levels were lower in Mongolian horses. Among 75 genera, 30 genera were significantly different (p<0.05) between the two breeds. We found that the environment was one of very important factors that influenced horse gut microbiota. These findings provide novel information about the gut microbiota of Mongolian horses and a foundation for future investigations of gut bacterial factors that may influence the development and progression of gastrointestinal disease in horses.

Keywords

References

  1. Blackmore, T. M., A. Dugdale, C. M. Argo, G. Curtis, E. Pinloche, P. A. Harris, H. J. Worgan, S. E. Girdwood, K. Dougal, C. J. Newbold, and N. R. McEwan. 2013. Strong stability and host specific bacterial community in faeces of ponies. PloS One 8:e75079. https://doi.org/10.1371/journal.pone.0075079
  2. Chao, Y., L. R. Marks, M. M. Pettigrew, and A. P. Hakansson. 2014. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front. Cell. Infect. Microbiol. 4:194.
  3. Cole, J., J. Aberdein, J. Jubrail, and D. H. Dockrell. 2014. The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus: Mechanisms and contrasts. Adv. Microb. Physiol. 65:125-202. https://doi.org/10.1016/bs.ampbs.2014.08.004
  4. Costa, M. C., L. G. Arroyo, E. Allen-Vercoe, H. R. Stampfli, P. T. Kim, A. Sturgeon, and J. S. Weese. 2012. Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene. PloS one 7:e41484. https://doi.org/10.1371/journal.pone.0041484
  5. Costa, M. C. and J. S. Weese. 2012. The equine intestinal microbiome. Anim. Health Res. Rev. Conference of Research Workers in Animal Diseases 13:121-128.
  6. Daly, K., C. J. Proudman, S. H. Duncan, H. J. Flint, J. Dyer, and S. P. Shirazi-Beechey. 2012. Alterations in microbiota and fermentation products in equine large intestine in response to dietary variation and intestinal disease. Br. J. Nutr. 107:989-995. https://doi.org/10.1017/S0007114511003825
  7. Dougal, K., G. de la Fuente, P. A. Harris, S. E. Girdwood, E. Pinloche, R. J. Geor, B. D. Nielsen, H. C. Schott 2nd, S. Elzinga, and C. J. Newbold. 2014. Characterisation of the faecal bacterial community in adult and elderly horses fed a high fibre, high oil or high starch diet using 454 pyrosequencing. PloS one 9:e87424. https://doi.org/10.1371/journal.pone.0087424
  8. Dougal, K., P. A. Harris, A. Edwards, J. A. Pachebat, T. M. Blackmore, H. J. Worgan, and C. J. Newbold. 2012. A comparison of the microbiome and the metabolome of different regions of the equine hindgut. FEMS Microbiol. Ecol. 82:642-652. https://doi.org/10.1111/j.1574-6941.2012.01441.x
  9. Gharechahi, J., H. S. Zahiri, K. A. Noghabi, and G. H. Salekdeh. 2015. In-depth diversity analysis of the bacterial community resident in the camel rumen. Syst. Appl. Microbiol. 38:67-76. https://doi.org/10.1016/j.syapm.2014.09.004
  10. Gustafsson, A., V. Baverud, A. Franklin, A. Gunnarsson, G. Ogren, and C. Ingvast-Larsson. 1999. Repeated administration of trimethoprim/sulfadiazine in the horse--pharmacokinetics, plasma protein binding and influence on the intestinal microflora. J. Vet. Pharmacol. Ther. 22:20-26. https://doi.org/10.1046/j.1365-2885.1999.00183.x
  11. Hintz, H. F. and N. F. Cymbaluk. 1994. Nutrition of the horse. Ann. Rev. Nutr. 14:243-267. https://doi.org/10.1146/annurev.nu.14.070194.001331
  12. Lamendella, R., J. W. Domingo, S. Ghosh, J. Martinson, and D. B. Oerther. 2011. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 11:103. https://doi.org/10.1186/1471-2180-11-103
  13. Larsen, N., F. K. Vogensen, F. W. van den Berg, D. S. Nielsen, A. S. Andreasen, B. K. Pedersen, W. A. Al-Soud, S. J. Sorensen, L. H. Hansen, and M. Jakobsen. 2010. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PloS one 5:e9085. https://doi.org/10.1371/journal.pone.0009085
  14. Ley, R. E., M. Hamady, C. Lozupone, P. J. Turnbaugh, R. R. Ramey, J. S. Bircher, M. L. Schlegel, T. A. Tucker, M. D. Schrenzel, R. Knight, and J. I. Gordon. 2008. Evolution of mammals and their gut microbes. Science 320:1647-1651. https://doi.org/10.1126/science.1155725
  15. Ley, R. E., P. J. Turnbaugh, S. Klein, and J. I. Gordon. 2006. Microbial ecology: Human gut microbes associated with obesity. Nature 444:1022-1023. https://doi.org/10.1038/4441022a
  16. Liu, X., H. Fan, X. Ding, Z. Hong, Y. Nei, Z. Liu, G. Li, and H. Guo. 2014. Analysis of the gut microbiota by high-throughput sequencing of the $V_5-V_6$ regions of the 16S rRNA gene in donkey. Curr. Microbiol. 68:657-662. https://doi.org/10.1007/s00284-014-0528-5
  17. Manco, M., L. Putignani, and G. F. Bottazzo. 2010. Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr. Rev. 31:817-844. https://doi.org/10.1210/er.2009-0030
  18. Mohammed, R., G. E. Brink, D. M. Stevenson, A. P. Neumann, K. A. Beauchemin, G. Suen, and P. J. Weimer. 2014. Bacterial communities in the rumen of Holstein heifers differ when fed orchardgrass as pasture vs. hay. Front. Microbiol. 5:689.
  19. O'Donnell, M. M., H. M. Harris, I. B. Jeffery, M. J. Claesson, B. Younge, P. W. O'Toole, and R. P. Ross. 2013. The core faecal bacterial microbiome of Irish Thoroughbred racehorses. Lett. Appl. Microbiol. 57:492-501. https://doi.org/10.1111/lam.12137
  20. Obitsu, T., H. Hata, and K. Taniguchi. 2015. Nitrogen digestion and urea recycling in Hokkaido native horses fed hay-based diets. Anim. Sci. J. 86:159-165. https://doi.org/10.1111/asj.12256
  21. Sasaki, M., N. Ogasawara, Y. Funaki, M. Mizuno, A. Iida, C. Goto, S. Koikeda, K. Kasugai, and T. Joh. 2013. Transglucosidase improves the gut microbiota profile of type 2 diabetes mellitus patients: A randomized double-blind, placebo-controlled study. BMC Gastroenterol. 13:81. https://doi.org/10.1186/1471-230X-13-81
  22. Schoster, A., L. G. Arroyo, H. R. Staempfli, and J. S. Weese. 2013. Comparison of microbial populations in the small intestine, large intestine and feces of healthy horses using terminal restriction fragment length polymorphism. BMC Res. Notes 6:91. https://doi.org/10.1186/1756-0500-6-91
  23. Shanks, O. C., C. A. Kelty, S. Archibeque, M. Jenkins, R. J. Newton, S. L. McLellan, S. M. Huse, and M. L. Sogin. 2011. Community structures of fecal bacteria in cattle from different animal feeding operations. Appl. Environ. Microbiol. 77:2992-3001. https://doi.org/10.1128/AEM.02988-10
  24. Shepherd, M. L., W. S. Swecker, Jr., R. V. Jensen, and M. A. Ponder. 2012. Characterization of the fecal bacteria communities of forage-fed horses by pyrosequencing of 16S rRNA V4 gene amplicons. FEMS Microbiol. Lett. 326:62-68. https://doi.org/10.1111/j.1574-6968.2011.02434.x
  25. Steelman, S. M., B. P. Chowdhary, S. Dowd, J. Suchodolski, and J. E. Janecka. 2012. Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC Vet. Res. 8:231. https://doi.org/10.1186/1746-6148-8-231
  26. Willing, B., A. Voros, S. Roos, C. Jones, A. Jansson, and J. E. Lindberg. 2009. Changes in faecal bacteria associated with concentrate and forage-only diets fed to horses in training. Equine Vet. J. 41:908-914. https://doi.org/10.2746/042516409X447806

Cited by

  1. Rapid regrowth and detection of microbial contaminants in equine fecal microbiome samples vol.12, pp.11, 2017, https://doi.org/10.1371/journal.pone.0187044
  2. Fecal microbiota of three bactrian camels (Camelus ferus and Camelus bactrianus) in China by high throughput sequencing of the V3-V4 region of the 16S rRNA gene vol.9, pp.1, 2017, https://doi.org/10.1007/s40333-016-0026-7
  3. A global comparison of the microbiome compositions of three gut locations in commercial pigs with extreme feed conversion ratios vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-22692-0
  4. var. multicaulis) leaves or an artificial diet vol.8, pp.46, 2018, https://doi.org/10.1039/C8RA04627A
  5. Dysbiosis associated with acute helminth infections in herbivorous youngstock - observations and implications vol.9, pp.None, 2016, https://doi.org/10.1038/s41598-019-47204-6
  6. Expression of immune regulatory genes correlate with the abundance of specific Clostridiales and Verrucomicrobia species in the equine ileum and cecum vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-49081-5
  7. 말 분변 내 마이크로바이옴 다양성 조사 vol.34, pp.3, 2019, https://doi.org/10.12750/jarb.34.3.157
  8. Association Between Tail-Biting and Intestinal Microbiota Composition in Pigs vol.7, pp.None, 2016, https://doi.org/10.3389/fvets.2020.563762
  9. Dissection of the cecal microbial community in chickens after Eimeria tenella infection vol.13, pp.1, 2016, https://doi.org/10.1186/s13071-020-3897-6
  10. Dietary Energy Level Impacts the Performance of Donkeys by Manipulating the Gut Microbiome and Metabolome vol.8, pp.None, 2021, https://doi.org/10.3389/fvets.2021.694357
  11. Effects of Pasture Grass, Silage, and Hay Diet on Equine Fecal Microbiota vol.11, pp.5, 2016, https://doi.org/10.3390/ani11051330
  12. Comparison of the Gut Microbiota of Jeju and Thoroughbred Horses in Korea vol.8, pp.5, 2016, https://doi.org/10.3390/vetsci8050081
  13. The Equine Faecal Microbiota of Healthy Horses and Ponies in The Netherlands: Impact of Host and Environmental Factors vol.11, pp.6, 2016, https://doi.org/10.3390/ani11061762
  14. Comparison of the Fecal Microbiota of Horses with Intestinal Disease and Their Healthy Counterparts vol.8, pp.6, 2021, https://doi.org/10.3390/vetsci8060113
  15. The Influence of Gut Microbiota on the Fecundity of Henosepilachna vigintioctopunctata (Coleoptera: Coccinellidae) vol.21, pp.4, 2016, https://doi.org/10.1093/jisesa/ieab061
  16. Analysis of gut microbiota in three species belonging to different genera ( Hemitragus , Pseudois , and Ovis ) from the subfamily Caprinae in the absence of environmental variance vol.11, pp.17, 2016, https://doi.org/10.1002/ece3.7976
  17. The effects of signalment, diet, geographic location, season, and colitis associated with antimicrobial use or SALMONELLA infection on the fecal microbiome of horses vol.35, pp.5, 2021, https://doi.org/10.1111/jvim.16206