DOI QR코드

DOI QR Code

Relationships between Single Nucleotide Polymorphism Markers and Meat Quality Traits of Duroc Breeding Stocks in Korea

  • Choi, J.S. (Department of Animal Science, Chungbuk National University) ;
  • Jin, S.K. (Department of Animal Resources Technology and Swine Science & Technology Center, Gyeongnam National University of Science and Technology) ;
  • Jeong, Y.H. (Hanwoo Department, Korea Animal Improvement Association) ;
  • Jung, Y.C. (Jung P&C Institute) ;
  • Jung, J.H. (Jung P&C Institute) ;
  • Shim, K.S. (Department of Animal Biotechnology, Chunbuk National University) ;
  • Choi, Y.I. (Department of Animal Science, Chungbuk National University)
  • Received : 2016.02.29
  • Accepted : 2016.08.10
  • Published : 2016.09.01

Abstract

This study was conducted to determine the relationships of five intragenic single nucleotide polymorphism (SNP) markers (protein kinase adenosine monophosphate-activated ${\gamma}3$ subunit [PRKAG3], fatty acid synthase [FASN], calpastatin [CAST], high mobility group AT-hook 1 [HMGA1], and melanocortin-4 receptor [MC4R]) and meat quality traits of Duroc breeding stocks in Korea. A total of 200 purebred Duroc gilts from 8 sires and 40 dams at 4 pig breeding farms from 2010 to 2011 reaching market weight (110 kg) were slaughtered and their carcasses were chilled overnight. Longissimus dorsi muscles were removed from the carcass after 24 h of slaughter and used to determine pork properties including carcass weight, backfat thickness, moisture, intramuscular fat, $pH_{24h}$, shear force, redness, texture, and fatty acid composition. The PRKAG3, FASN, CAST, and MC4R gene SNPs were significantly associated with the meat quality traits (p<0.003). The meats of PRKAG3 (A 0.024/G 0.976) AA genotype had higher pH, redness and texture than those from PRKAG3 GG genotype. Meats of FASN (C 0.301/A 0.699) AA genotype had higher backfat thickness, texture, stearic acid, oleic acid and polyunsaturated fatty acid than FASN CC genotype. While the carcasses of CAST (A 0.373/G 0.627) AA genotype had thicker backfat, and lower shear force, palmitoleic acid and oleic acid content, they had higher stearic acid content than those from the CAST GG genotype. The MC4R (G 0.208/A 0.792) AA genotype were involved in increasing backfat thickness, carcass weight, moisture and saturated fatty acid content, and decreasing unsaturated fatty acid content in Duroc meat. These results indicated that the five SNP markers tested can be a help to select Duroc breed to improve carcass and meat quality properties in crossbred pigs.

Keywords

References

  1. Adan, R. A. H., B. Tiesjema, J. J. G. Hillebrand, S. E. la Fleur, M. J. H. Kas, and M. de Krom. 2006. The MC4 receptor and control of appetite. Br. J. Pharmacol. 149:815-827. https://doi.org/10.1038/sj.bjp.0706929
  2. Bertol, T. M., R. M. L. de Campos, J. V. Ludke, N. N. Terra, E. A. P. de Figueiredo, A. Coldebella, J. I. dos Santos Filho, V. L. Kawski, and N. M. Lehr. 2013. Effects of genotype and dietary oil supplementation on performance, carcass traits, pork quality and fatty acid composition of backfat and intramuscular fat. Meat Sci. 93:507-516. https://doi.org/10.1016/j.meatsci.2012.11.012
  3. Cameron, N. D. and M. B. Enser. 1991. Fatty acid composition of lipid in longissimus dorsi muscle of duroc and british landrace pigs and its relationship with eating quality. Meat Sci. 29:295-307. https://doi.org/10.1016/0309-1740(91)90009-F
  4. Chin, K. B., M. Y. Go, H. C. Lee, S. K. Chung, K. H. Baik, and C. B. Choi. 2012. Articles: Physicochemical properties and tenderness of hanwoo loin and round as affected by raising period and marbling score. Korean J. Food Sci. An. 32:842-848. https://doi.org/10.5851/kosfa.2012.32.6.842
  5. Choi, I., R. O. Bates, N. E. Raney, J. P. Steibel, and C. W. Ernst. 2012. Evaluation of QTL for carcass merit and meat quality traits in a US commercial Duroc population. Meat Sci. 92:132-138. https://doi.org/10.1016/j.meatsci.2012.04.023
  6. Ciobanu, D., J. Bastiaansen, M. Malek, J. Helm, J. Woollard, G. Plastow, and M. Rothschild. 2001. Evidence for new alleles in the protein kinase adenosine monophosphate-activated gamma(3)-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality. Genetics 159:1151-1162.
  7. Ciobanu, D. C., J. W. Bastiaansen, S. M. Lonergan, H. Thomsen, J. C. Dekkers, G. S. Plastow, and M. F. Rothschild. 2004. New alleles in calpastatin gene are associated with meat quality traits in pigs. J. Anim. Sci. 82:2829-2839. https://doi.org/10.2527/2004.82102829x
  8. Clop, A., C. Ovilo, M. Perez-Enciso, A. Cercos, A. Tomas, A. Fernandez, A. Coll, J. M. Folch, C. Barragan, I. Diaz, M. A. Oliver, L. Varona, L. Silio, A. Sanchez, and J. L. Noguera. 2003. Detection of qtl affecting fatty acid composition in the pig. Mamm. Genome 14:650-656. https://doi.org/10.1007/s00335-002-2210-7
  9. Dalvit, C., M. De Marchi, and M. Cassandro. 2007. Genetic traceability of livestock products: A review. Meat Sci. 77:437-449. https://doi.org/10.1016/j.meatsci.2007.05.027
  10. Davoli, R., S. Braglia, V. Valastro, C. Annarratone, M. Comella, P. Zambonelli, I. Nisi, M. Gallo, L. Buttazzoni, and V. Russo. 2012. Analysis of MC4R polymorphism in italian large white and italian duroc pigs: Association with carcass traits. Meat sci. 90:887-892. https://doi.org/10.1016/j.meatsci.2011.11.025
  11. De Smet, S., K. Raes, and D. Demeyer. 2004. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 53:81-98. https://doi.org/10.1051/animres:2004003
  12. Folch, J., M. Lees, and G. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497-509.
  13. Ibanez-Escriche, N., S. Forni, J. L. Noguera, and L. Varona. 2014. Genomic information in pig breeding: Science meets industry needs. Livest. Sci. 166:94-100. https://doi.org/10.1016/j.livsci.2014.05.020
  14. Jang, Y. J., M. R. Ji, M. H. Jeon, J. S. Kim, K. W. Kim, D. W. Han, H. J. Chung, B. C. Yang, J. G. Yoo, J. K. Park, T. O. Kim, and S. J. Byun. 2012. Analysis of the foreign gene transmission in the gfp transgenic chickens. Korean J. Poult. Sci. 39:241-244. https://doi.org/10.5536/KJPS.2012.39.3.241
  15. Kim, K. S., J. J. Lee, H. Y. Shin, B. H. Choi, C. K. Lee, J. J. Kim, B. W. Cho, and T. H. Kim. 2006a. Association of melanocortin 4 receptor (MC4R) and high mobility group at-hook 1 (HMGA1) polymorphisms with pig growth and fat deposition traits. Anim. Genet. 37:419-421. https://doi.org/10.1111/j.1365-2052.2006.01482.x
  16. Kim, K. S., N. Larsen, T. Short, G. Plastow, and M. F. Rothschild. 2000. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mamm. Genome. 11:131-135. https://doi.org/10.1007/s003350010025
  17. Kim, K. S., J. J. Lee, H. Y. Shin, B. H. Choi, C. K. Lee, J. J. Kim, B. W. Cho, and T. H. Kim. 2006b. Association of melanocortin 4 receptor (MC4R) and high mobility group at-hook 1 (HMGA1) polymorphisms with pig growth and fat deposition traits. Anim. Genet. 37:419-421. https://doi.org/10.1111/j.1365-2052.2006.01482.x
  18. Kim, K. S., H. Y. Shin, J. J. Lee, S. K. Hong, B-H. Choi, T. H. Kim, H. K. Lee, and B. W. Cho. 2005. Investigation of porcine melanocortin-4 receptor (MC4R) polymorphism on economic traits. J. Life Sci. 15:968-971. https://doi.org/10.5352/JLS.2005.15.6.968
  19. Kim, K. S., H. Thomsen, J. Bastiaansen, N. T. Nguyen, J. C. Dekkers, G. S. Plastow, and M. F. Rothschild. 2004. Investigation of obesity candidate genes on porcine fat deposition quantitative trait loci regions. Obes. Res. 12:1981-1994. https://doi.org/10.1038/oby.2004.249
  20. Kim, S. W., Y. I. Choi, J. S. Choi, J. J. Kim, B. H. Choi, T. H. Kim, and K. S. Kim. 2011. Article: Porcine fatty acid synthase gene polymorphisms are associated with meat quality and fatty acid composition. Korean J. Food Sci. An. 31:356-365. https://doi.org/10.5851/kosfa.2011.31.3.356
  21. Krzecio, E., M. Kocwin-Podsiadla, J. Kuryl, A. Zybert, H. Sieczkowska, and K. Antosik. 2008. The effect of interaction between genotype CAST/RsaI (calpastatin) and MYOG/MspI (myogenin) on carcass and meat quality in pigs free of RYR1T allele. Meat Sci. 80:1106-1115. https://doi.org/10.1016/j.meatsci.2008.05.002
  22. Kuryl, J., W. Kapelanski, M. Pierzchala, S. Grajewska, and M. Bocian. 2003. Preliminary observations on the effect of calpastatin gene (CAST) polymorphism on carcass traits in pigs. Anim. Sci. Pap. Rep. 21:87-95.
  23. Lonergan, E. H., W. Zhang, and S. M. Lonergan. 2010. Biochemistry of postmortem muscle-Lessons on mechanisms of meat tenderization. Meat Sci. 86:184-195. https://doi.org/10.1016/j.meatsci.2010.05.004
  24. Maharani, D., C. Jo, J. T. Jeon, and J. H. Lee. 2011. Review: Quantitative trait loci and candidate genes affecting fatty acid composition in cattle and pig. Korean J. Food Sci. An. 31:325-338. https://doi.org/10.5851/kosfa.2011.31.3.325
  25. Mignon-Grasteau, S., A. Boissy, J. Bouix, J.-M. Faure, A. D. Fisher, G. N. Hinch, P. Jensen, P. Le Neindre, P. Mormede, and P. Prunet. 2005. Genetics of adaptation and domestication in livestock. Livest. Prod. Sci. 93:3-14. https://doi.org/10.1016/j.livprodsci.2004.11.001
  26. Milan, D., J.-T. Jeon, C. Looft, V. Amarger, A. Robic, M. Thelander, C. Rogel-Gaillard, S. Paul, N. Iannuccelli, and L. Rask. 2000. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288:1248-1251. https://doi.org/10.1126/science.288.5469.1248
  27. Ministry of Food and Drug Safety in Korea. 2010. Livestock Products Sanitary Control Act. No. 10310. Seoul, Korea.
  28. Ministry of Food and Drug Safety in Korea. 2014. Livestock Products Sanitary Control Act. No. 12672. Seoul, Korea.
  29. Morrison, W. R. and L. M. Smith. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5:600-608.
  30. Munoz, G., E. Alves, A. Fernandez, C. Ovilo, C. Barragan, J. Estelle, R. Quintanilla, J. Folch, L. Silio, and M. Rodriguez. 2007. QTL detection on porcine chromosome 12 for fatty-acid composition and association analyses of the fatty acid synthase, gastric inhibitory polypeptide and acetyl-coenzyme a carboxylase alpha genes. Anim. Genet. 38:639-646. https://doi.org/10.1111/j.1365-2052.2007.01668.x
  31. National Institute of Animal Science. 2012. Korean feeding standard for swine National Institute of Animal Science, NIAS, Suwon, Korea.
  32. Ovilo, C., A. Fernandez, M. C. Rodriguez, M. Nieto, and L. Silio. 2006. Association of MC4R gene variants with growth, fatness, carcass composition and meat and fat quality traits in heavy pigs. Meat Sci. 73:42-47. https://doi.org/10.1016/j.meatsci.2005.10.016
  33. Park, B., S. Cho, Y. Yoo, J. Kim, H. Chae, J. Ahn, Y. Kim, J. Lee, and S. Yun. 2002. Comparison of pork quality by different postmortem pH24 values. Korean J. Anim. Sci. Technol. 44:233-238. https://doi.org/10.5187/JAST.2002.44.2.233
  34. Rohrer, G., D. Nonneman, R. Miller, H. Zerby, and S. Moeller, 2012. Association of single nucleotide polymorphism (SNP) markers in candidate genes and qtl regions with pork quality traits in commercial pigs. Meat Sci. 92:511-518. https://doi.org/10.1016/j.meatsci.2012.05.020
  35. SAS, P. 2003. Windows version 9.1. 3. SAS Institute Inc., Cary, NC, USA.
  36. Suzuki, K., T. Shibata, H. Kadowaki, H. Abe, and T. Toyoshima. 2003. Meat quality comparison of berkshire, duroc and crossbred pigs sired by berkshire and duroc. Meat Sci. 64:35-42. https://doi.org/10.1016/S0309-1740(02)00134-1
  37. Wood, J., R. Richardson, G. Nute, A. Fisher, M. Campo, E. Kasapidou, P. Sheard, and M. Enser. 2004. Effects of fatty acids on meat quality: A review. Meat Sci. 66:21-32. https://doi.org/10.1016/S0309-1740(03)00022-6

Cited by

  1. Genetic Marker Discovery in Complex Traits: A Field Example on Fat Content and Composition in Pigs vol.17, pp.12, 2016, https://doi.org/10.3390/ijms17122100
  2. Genome-wide association studies for two exterior traits in Chinese Dongxiang spotted pigs vol.89, pp.6, 2018, https://doi.org/10.1111/asj.13003
  3. Association of Twelve Candidate Gene Polymorphisms with the Intramuscular Fat Content and Average Backfat Thickness of Chinese Suhuai Pigs vol.9, pp.11, 2016, https://doi.org/10.3390/ani9110858
  4. 제주재래돼지와 듀록 참조축군에서 Melanocortin 4 Receptor (MC4R) 유전자형과 지방산 조성간의 관련성 분석 vol.30, pp.1, 2016, https://doi.org/10.5352/jls.2020.30.1.58
  5. The Asp298Asn polymorphism of melanocortin‐4 receptor (MC4R) in pigs: evidence for its potential effects on MC4R constitutive activity and cell surface expression vol.51, pp.5, 2016, https://doi.org/10.1111/age.12986
  6. Association of the melanocortin 4 receptor (MC4R) gene polymorphism with growth traits of Hu sheep vol.192, pp.None, 2016, https://doi.org/10.1016/j.smallrumres.2020.106206
  7. Profiling and Functional Analysis of Long Noncoding RNAs and mRNAs during Porcine Skeletal Muscle Development vol.22, pp.2, 2016, https://doi.org/10.3390/ijms22020503