DOI QR코드

DOI QR Code

Quantitative corrosion imaging of pipelines using multi helical guided ultrasonic waves

  • Dehghan-Niri, Ehsan (Department of Civil, Structural and Environmental Engineering, University at Buffalo) ;
  • Salamone, Salvatore (Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin)
  • 투고 : 2015.12.28
  • 심사 : 2016.05.03
  • 발행 : 2016.09.25

초록

This paper presents a multi helical ultrasonic imaging approach for quantitative corrosion damage monitoring of cylindrical structures. The approach consists of two stages. First a multi helical ultrasonic imaging (MHUI) algorithm is used to provide qualitative images of the structure of interest. Then, an optimization problem is solved in order to obtain quantitative damage information, such as thickness map. Experimental tests are carried out on a steel pipe instrumented with six piezoelectric transducers to validate the proposed approach. Three thickness recesses are considered to simulate corrosion damage. The results show the efficiency of the proposed approach for quantifying corrosion location, area and remnant thickness.

키워드

과제정보

연구 과제 주관 기관 : Pipeline and Hazardous Materials Safety Administration's (PHMSA)

참고문헌

  1. Belanger, P. (2009), Feasibility of thickness mapping, Imperial College London.
  2. Belanger, P. and Cawley, P. (2008), "Lamb wave tomography to evaluate the maximum depth of corrosion patches", AIP Conf. Proc.
  3. Belanger, P. and Cawley, P. (2009), "Feasibility of low frequency straight-ray guided wave tomography", NDT& E Int., 42, 113-119. doi: 10.1016/j.ndteint.2008.10.006
  4. Belanger, P., Cawley, P. and Simonetti, F. (2010), "Guided wave diffraction tomography within the born approximation", IEEE T. Ultrason Ferr., 57, 1405-1418. doi: 10.1109/TUFFC.2010.1559
  5. Brondel, D., Edwards, R., Hayman. A. et al. (1994), "Corrosion in the Oil Industry", Oilf Rev 4-18. doi: 10.1021/ie50320a006
  6. Ciampa, F., Pickering, S., Scarselli, G. et al. (2014), "Nonlinear elastic tomography using sparse array measurements", to cite this version 7th Eur. work. struct", Struct Health. Monit., Nantes, Fr., 1878-1885.
  7. Dehghan-Niri, E. and Salamone, S. (2014), "A multi-helical ultrasonic imaging approach for the structural health monitoring of cylindrical structures", Struct. Health Monit., 14, 73-85. doi: 10.1177/1475921714548937
  8. Dehghan-niri, E., Zahrai, S.M. and Mohtat, A. (2010), "Effectiveness-robustness objectives in MTMD system design : An evolutionary optimal design methodology", Struct Control Heal Monit., 218-236. doi: 10.1002/stc
  9. Flynn, E.B., Todd, M.D., Wilcox, P.D. et al. (2011), "Maximum-likelihood estimation of damage location in guided-wave structural health monitoring", Proc. R. Soc. A. Math. Phys. Eng. Sci., 467, 2575-2596. doi: 10.1098/rspa.2011.0095
  10. Gao, H., Shi, Y. and Rose, J.L. (2005), "Guided wave tomography on an aircraft wing with leave in place sensors", AIP Conf. Proc.
  11. Hall, J.S., Fromme, P. and Michaels, J.E. (2011), "Ultrasonic guided wave imaging for damage characterization", Proceedings of the Aicr. Airworth. Sust. Conf.
  12. Hinders, M., Malyarenko, E. and McKeon, J. (1998), "Contact scanning Lamb wave tomography", J. Acoust. Soc. Am., 104, http://dx.doi.org/10.1121/1.423524.
  13. Huthwaite, P., Ribichini, R., Cawley, P. and Lowe, M.J.S. (2013), "Mode selection for corrosion detection in pipes and vessels via guided wave tomography", IEEE T. Ultrason Ferroelectr Freq Control 60, 1165-1177. doi: 10.1109/TUFFC.2013.2679
  14. Huthwaite, P. and Simonetti, F. (2013), "High-resolution guided wave tomography", Wave Motion, 50, 979-993. doi: 10.1016/j.wavemoti.2013.04.004
  15. Jansen, D.P. and Hutchins, D.A. (1990), "Wave tomography", Ultrason. Symp., 1017-1020.
  16. Kolda, T.G., Lewis, R.M. and Torczon, V. (2003), "Optimization by direct search: New perspectives on some classical and modern methods", SIAM Rev., 45, 385-482. doi: 10.1137/S003614450242889
  17. Leonard, K.R. and Hinders, M.K. (2003), "Guided wave helical ultrasonic tomography of pipes", J. Acoust. Soc. Am., 114,767. doi: 10.1121/1.1593068
  18. Leonard, K.R. and Hinders, M.K. (2005a), "Lamb wave tomography of pipe-like structures", Ultrasonics, 43, 574-583. doi: 10.1016/j.ultras.2004.12.006
  19. Leonard, K.R. and Hinders, M.K. (2005b), "Multi-mode Lamb wave tomography with arrival time sorting", J. Acoust. Soc. Am., 117, 2028. doi: 10.1121/1.1867792
  20. Li, J. and Rose, J.L. (2006), "Natural beam focusing of non-axisymmetric guided waves in large-diameter pipes", Ultrasonics, 44, 35-45. doi: 10.1016/j.ultras.2005.07.002
  21. Lu, Y. and Michaels, J.E. (2005), "A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations", Ultrasonics, 43, 717-731. doi: 10.1016/j.ultras.2005.05.001
  22. Nagy, P.B., Simonetti, F. and Instanes, G. (2014), "Corrosion and erosion monitoring in plates and pipes using constant group velocity Lamb wave inspection", Ultrasonics, 54, 1832-1841. doi: 10.1016/j.ultras.2014.01.017
  23. Pierce, A.D. and Kil, H.G. (1990), "Elastic wave propagation from point excitations on thin-walled cylindrical shells", J. Vib. Acoust., 112, 399. doi: 10.1115/1.2930524
  24. Qing, X.P., Beard, S., Shen, S.B. et al. (2009) "Development of a real-time active pipeline integrity detection system", Smart Mater. Struct., 18, 115010. doi: 10.1088/0964-1726/18/11/115010
  25. Willey, C.L., Simonetti, F., Nagy, P.B. and Instanes, G. (2014), "Guided wave tomography of pipes with high-order helical modes", NDT& E Int., 65, 8-21. doi: 10.1016/j.ndteint.2014.03.010
  26. Zhao, X., Gao, H., Zhang, G. et al. (2007), "Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring", Smart Mater Struct., 16, 1208-1217. doi: 10.1088/0964-1726/16/4/032

피인용 문헌

  1. An algebraic reconstruction imaging approach for corrosion damage monitoring of pipelines vol.28, pp.5, 2016, https://doi.org/10.1088/1361-665x/ab1160