DOI QR코드

DOI QR Code

Geoacoustic Model of Coastal Bottom Strata at Jeongdongjin in the Korean Continental Margin of the East Sea

동해 한국대륙주변부 정동진 연안 지층의 지음향 모델

  • Ryang, Woo-Hun (Division of Science Education and Institute of Science Education, Chonbuk National University) ;
  • Kim, Seong-Pil (Pohang Branch, Korea Institute of Geoscience and Mining Resources (KIGAM)) ;
  • Kim, Dae-Choul (Department of Energy Resources Engineering, Pukyong National University) ;
  • Hahn, Jooyoung (Agency for Defense Development)
  • 양우헌 (전북대학교 과학교육학부/과학교육연구소) ;
  • 김성필 (한국지질자원연구원 포항지질자원실증연구센터) ;
  • 김대철 (부경대학교 에너지자원공학과) ;
  • 한주영 (국방과학연구소)
  • Received : 2016.08.10
  • Accepted : 2016.08.25
  • Published : 2016.08.30

Abstract

Geoacoustic modeling is used to predict sound transmission through submarine bottom layers of sedimentary strata and acoustic basement. This study reconstructed four geoacoustic models for sediments of 50 m thick at the Jeongdongjin area in the western continental margin of the East Sea. Bottom models were based on the data of the highresolution air-gun seismic and subbottom profiles (SBP) with sediment cores. P-wave speed was measured by the pulse transmission technique, and the resonance frequency of piezoelectric transducers was maintained at 1MHz. Measurements of 42 P-wave speeds and 41 attenuations were fulfilled in three core sediments. For actual modeling, the P-wave speeds of the models were compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of coastal bottom strata will be used for geoacoustic and underwater acoustic experiments reflecting vertical and lateral variability of geoacoustic properties in the Jeongdongjin area of the East Sea.

지음향 모델링은 퇴적층과 기반암의 해저 지층을 통해 전파되는 음파 특성을 예측하기 위해 사용된다. 이 연구는 동해 한국대륙주변부의 정동진 해역에서 50 m 퇴적층 심도의 4개 지음향 모델을 구성하였다. 지층 모델은 고해상 에어건 탄성파 자료, SBP 자료, 퇴적물 코어에 근거한다. P파 속도는 신호투과법에 의해 측정되었고, 압전기 트랜스듀서의 공진 중심 주파수는 1 MHz를 유지하였다. 42개 P파 속도와 41개 음감쇠 측정이 세 개 코어 퇴적물에서 수행되었다. 실제 모델링을 위해, 모델의 P파 속도는 Hamilton 방법을 이용하여 해저면 아래 현장 심도 속도로 보정하였다. 연안 지층의 이 지음향 모델은 동해 정동진 해역에서 지음향 특성의 수직/수평 변화를 반영하는 지음향/수중음향 실험을 위해 활용될 것이다.

Keywords

References

  1. Abbot, P., Celuzza, S., Dyer, I., Gomes, B., Fulford, J., Lynch, J., Gawarkiewicz, G., and Volak, D., 2001, Effects of Korea littoral environment on acoustic propagation. IEEE Journal of Oceanic Engineering, 26, 266-284. https://doi.org/10.1109/48.922793
  2. Ainslie, M.A., 2010, Principles of sonar performance modeling, Springer, Berlin, Germany, 707 p.
  3. Birch, F., 1960, The velocity of compressional waves in rocks up to 10 kilobars. Journal of Geophysical Research, 65, 1083-1102. https://doi.org/10.1029/JZ065i004p01083
  4. Boyce, R.E., 1976, Definition and laboratory techniques of compressional sound velocity parameter and wet-water, wet bulk density, and porosity parameter by gravimetric and gamma ray attenuation techniques. In Initial Reports of the Deep Sea Drilling Project 33, U.S. Government Printing Office, Washington, DC, USA, 931-958.
  5. Carey, W.M., Doutt, J., Evans, R.B., and Dillman, L.M., 1995, Shallow-water sound transmission measurements on the New Jersey continental shelf. IEEE Journal of Oceanic Engineering, 20, 321-336. https://doi.org/10.1109/48.468247
  6. Cederberg, R.J., Siegmann, W.L., and Carey, W.M., 1995, Influence of geoacoustic modeling on predictability of low-frequency propagation in range-dependent, shallow-water environments. Journal of the Acoustical Society of America, 97, 2754-2766. https://doi.org/10.1121/1.411907
  7. Folk, R.L., 1968, Petrology of sedimentary rocks. Hemphill's, Austin, USA, 170 p.
  8. Folk, R.L. and Ward, W.C., 1957, A study in the significance of grain-size parameters. Journal of Sedimentary Petrology, 27, 3-27. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  9. Hamilton, E.L. 1980, Geoacoustic modeling of the sea floor. Journal of the Acoustical Society of America, 68, 1313-1339. https://doi.org/10.1121/1.385100
  10. Hamilton, E.L., 1987, Acoustic properties of sediments. In Lara-Saenz, A., Ranz-Guerra, C., and Carbo-Fite, C. (eds.), Acoustics and Ocean Bottom. Cosejo Superior de Investigaciones Cientificas, Madrid, Spain, 3-58.
  11. Jackson, D.R. and Richardson, M.D., 2007, High-Frequency seafloor acoustics. Springer, New York, USA, 616 p.
  12. Katsnelson, B., Petnikov, V., and Lynch, J., 2012, Fundamentals of shallow water acoustics. Springer, New York, USA, 540 p.
  13. KIGAM, 2001, Seismic stratigraphy and deep coring in the major harbours (I). Report NSDC-408-010302, Korea Institute of Geoscience and Mineral Resources, Daejeon, Korea, 142 p. (in Korean with English abstract)
  14. KIGAM, 2003, Seismic stratigraphy and deep coring in the major harbours (III). Report NSDC-417-030266, Korea Institute of Geoscience and Mineral Resources, Daejeon, Korea, 80 p. (in Korean with English abstract)
  15. Kim, D.C., 1989, Laboratory determination of compressional wave velocity for unconsolidated marine sediment. Bulletin of the Korean Fisheries Society, 22, 147-153. (in Korean with English abstract)
  16. Kim, D.C., Kim, G.Y., Seo, Y.K., Ha, D.H., Ha, I.C., Yoon, Y.S., and Kim, J.C., 1999, Automated velocity measurement technique for unconsolidated marine sediment. The Sea, Journal of the Korean Society of Oceanography, 4, 400-404. (in Korean with English abstract)
  17. Kim, D.C., Kim, G.Y., Yi, H.I., Seo, Y.K., Lee, G.S., Jung, J.H., and Kim, J.C., 2012, Geoacoustic provinces of the South Sea shelf off Korea. Quaternary International, 263, 139-147. https://doi.org/10.1016/j.quaint.2012.02.035
  18. Kim, G.Y., Kim, D.C., Yoo, D.G., and Shin, B.K., 2011, Physical and geoacoustic properties of surface sediments off eastern Geoje Island, South Sea of Korea. Quaternary International, 230, 21-33. https://doi.org/10.1016/j.quaint.2009.07.028
  19. Kwon, Y.K., 2005, Sequence stratigraphy of the Taebaek Group (Cambrian-Ordovician), mideast Korea and seismic stratigraphy of the Western South Korea Plateau, East Sea. Unpublished Ph.D. dissertation, Seoul National University, Seoul, Korea, 205 p.
  20. Kwon, Y.K., Yoon, S.H., and Chough, S.K., 2009, Seismic stratigraphy of the western South Korea Plateau, East Sea: implications for tectonic history and sequence development during back-arc evolution. Geo-Marine Letters, 29, 181-189. https://doi.org/10.1007/s00367-009-0133-y
  21. Mackenzie, K.V., 1981, Nine-term equation for sound speed in the oceans, Journal of the Acoustical Society of America, 70, 807-812. https://doi.org/10.1121/1.386920
  22. Ryang, W.H., Kwon, Y.K., Jin, J.H., Kim, H.T., and Lee, C.W., 2007a, Geoacoustic velocity of basement and Tertiary successions of the Okgye and Bukpyeong coast, East Sea. The Journal of the Korean Earth Sciences Society, 28, 367-373. https://doi.org/10.5467/JKESS.2007.28.3.367
  23. Ryang, W.H., Kwon, Y.K., Jin, J.H., Kim, H.T., Lee, C.W., Jung, J.H., Kim, D.C., Choi, J.H., Kim, Y.G., and Kim, S., 2007b, Geoacoustic characteristics of P-wave velocity in Donghae City - Ulleung Island line, East Sea: preliminary results. The Journal of the Acoustical Society of Korea, 26, 44-49.
  24. Ryang, W.H., Kwon, Y.K., Kim, S.P., Kim, D.C., and Choi, J.H., 2014, Geoacoustic model at the DH-1 long-core site in the Korean continental margin of the East Sea. Geosciences Journal, 18, 269-279. https://doi.org/10.1007/s12303-014-0005-y
  25. Sears, F. M. and Bonner, B. P. 1981, Ultrasonic attenuation measurement by spectral ratios utilizing signal processing techniques. IEEE Transactions on Geoscience and Remote Sensing, GE-192, 95-99.
  26. Toksoz, M.N., Johnston, D.H., and Timur, A., 1979, Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics, 44, 681-690. https://doi.org/10.1190/1.1440969
  27. Zhou, J-X., Zhang, X-Z., Rogers, P.H., and Jarzynski, J., 1987, Geoacoustic parameters in a stratified sea bottom from shallow-water acoustic propagation. Journal of the Acoustical Society of America, 82, 2068-2074. https://doi.org/10.1121/1.395651

Cited by

  1. Correcting the Sound Velocity of the Sediments in the Southwestern Part of the East Sea, Korea vol.37, pp.7, 2016, https://doi.org/10.5467/JKESS.2016.37.7.408
  2. Geoacoustic Model at the SSDP-105 Long-core Site of the Ulsan Coastal Area, the East Sea vol.39, pp.2, 2018, https://doi.org/10.5467/JKESS.2018.39.2.154