DOI QR코드

DOI QR Code

대규모 유선 액세스 네트워크 환경에서 에너지 소모량과 안티그리닝 영향도 추정 모델링 기법

Estimation Modelling of Energy Consumption and Anti-greening Impacts in Large-Scale Wired Access Networks

  • Suh, Yuhwa (Department of Information and Communication, Seoil University) ;
  • Kim, Kiyoung (Department of Computer Software, Seoil University)
  • 투고 : 2016.07.12
  • 심사 : 2016.07.25
  • 발행 : 2016.08.31

초록

유선 데이터 네트워크(wired data network) 영역에서 가장 많은 에너지를 요구하는 영역은 액세스 네트워크(access network) 영역이다. 오늘날 그린 네트워킹(Green networking)은 유선 데이터 네트워크에서도 통합적인 에너지 관리를 통해 에너지 낭비와 $CO_2$ 배출 감소를 유도하기 위해 주요 관심분야가 되었다. 그러나 유선 액세스 네트워크의 에너지 소모량과 $CO_2$ 배출에 의한 환경적 영향에 대해서는 널리 알려져 있지 않으며, 그에 따른 범용적이고 정량적인 평가 기준도 매우 부족하다. 본 논문에서는 유선 액세스 네트워크의 에너지 소모량을 추정하는 기존의 모델링 기법들의 문제점을 비교 분석하고 하향식(top-down) 접근법을 이용하여 대규모 유선 액세스 네트워크의 에너지 소모량을 추정하는 모델링 기법을 제안한다. 또한 제안 모델로부터 도출된 추정치를 이용하여 액세스 네트워크들이 환경에 미치는 영향도를 산출하는 모델을 제안한다. 그리고 실제 사례를 적용하여 기존 모델과 제안 모델로부터 산출한 추정치와 해당 사례에 대한 기존의 조사와 실측 데이터와 비교 평가 한다.

Energy consumption of today's wired data networks is driven by access networks. Today, green networking has become a issue to reduce energy wastes and $CO_2$ emission by adding energy managing mechanism to wired data networks. However, energy consumption and environmental impacts of wired access networks are largely unknown. In addition, there is a lack of general and quantitative valuation basis of energy use of large-scale access networks and $CO_2$ emissions from them. This paper compared and analyzed limits of existing models estimating energy consumption of access networks and it proposed a model to estimate energy consumption of large-scale access networks by top-down approach. In addition, this work presented models that assess environmental(anti-greening) impacts of access networks using results from our models. The performance evaluation of the proposed models are achieved by comparing with previous models based on existing investigated materials and actual measured values in accordance with real cases.

키워드

참고문헌

  1. SMARTer 2020 team, SMARTer2020: The role of ICT in driving a sustainable future, Global e-Sustainability Initiative(GeSI) and The Boston Consulting Group (BCG), 2012.
  2. S. L.anzisera, B. Nordman, and R. Brown, "Data network equipment energy use and savings potential in buildings," Energy Efficiency, vol. 5, no. 2, pp. 149-162, 2012. https://doi.org/10.1007/s12053-011-9136-4
  3. Y. Seo and Y. B. Ko, "Dynamic power management for energy efficient Wi-Fi direct," J. KICS, vol. 38B, no. 08, pp. 663-671, 2013. https://doi.org/10.7840/kics.2013.38B.8.663
  4. K. K. Jun, "Management of base stations having cell zooming capability for green cellular networks," J. KICS, vol. 36, no. 08, pp. 904-909, 2011. https://doi.org/10.7840/KICS.2011.36B.8.904
  5. Y. C. Kim, "Reduction effect of $CO_2$ discharge of green PC," J. KICS, vol. 39C, no. 02, pp. 115-121, 2014. https://doi.org/10.7840/kics.2014.39C.2.115
  6. A. P. Bianzino, C. Chaudet, D. Rossi, and J. Rougier, "A survey of green networking research," IEEE Commun. Surveys & Tuts., vol. 14, no. 1, pp. 3-20, 2012. https://doi.org/10.1109/SURV.2011.113010.00106
  7. R. Bolla, R, Bruschi, F. Davoli, and F. Cucchietti, "Energy efficiency in the future Internet: A survey of existing approaches and trends in energy-aware fixed network infrastructures," IEEE Commun. Surveys & Tuts., vol . 13, no. 2, pp. 223-244, 2011. https://doi.org/10.1109/SURV.2011.071410.00073
  8. Y. H. Suh, K. Y. Kim, A. R. Kim, and Y. T. Shin, "A study on impact of wired access networks for green Internet," J. Netw. and Comput. Appl., vol. 57, pp. 156-168, 2015. https://doi.org/10.1016/j.jnca.2015.07.016
  9. J. Baliga, R. Ayre, W. V. Sorin, K. Hinton, and R. S. Tucker, "Energy consumption in optical IP networks," J. Lightwave Technol., vol. 27, no. 13, pp. 2391-2403, 2009. https://doi.org/10.1109/JLT.2008.2010142
  10. R. Bolla, R. Bruschi, A. Carrega, F. Davoli, D. Suino, C. Vassilakis, and A. Zafeiropoulos, "Cutting the energy bills of Internet Service Providers and telecoms through power management: An impact analysis," Computer Networks, vol. 56, pp. 2320-2342, 2012. https://doi.org/10.1016/j.comnet.2012.04.003
  11. R. Bolla, F. Davoli, R. Bruschi, K. Christensen, and F. Cucchietti, "The potential impact of green technologies in next generation wireline networks : Is there room for energy savings optimization?," IEEE Commun. Mag., vol. 49, no. 8, pp. 80-86, 2011.
  12. K. Hinton, J. Baliga, M. Feng, R. Ayre, and R. S. Tucker, "Power consumption and energy efficiency in the Internet," IEEE Network, vol. 25, no. 2, pp. 6-12, 2011. https://doi.org/10.1109/MNET.2011.5730522
  13. J. Baliga, K. Hinton, and R. S. Tucker, "Energy consumption of the Internet," in Proc. Joint Int. Conf. Optical Internet, pp. 13, Melbourne, Australia, Jun. 2007.
  14. S. Lambert, W. V. Heddeghem, W. Vereecken, B. Lannoo, D. Colle, and M. Pickavet, "Worldwide electricity consumption of communication networks," Optics Express, vol. 20, no. 26, pp. B513-B524, 2012. https://doi.org/10.1364/OE.20.00B513
  15. W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo, and W. Joseph, "Power consumption in telecommunication networks: Overview and reduction strategies," IEEE Commun. Mag., vol. 49, no. 6, pp. 62-69, 2010. https://doi.org/10.1109/MCOM.2011.5783986
  16. J. Baliga, R. W. Ayre, K. Hinton, and R. S. Tucker, "Energy consumption in wired and wireless access networks," IEEE Commun. Mag., vol. 49, no. 6, pp. 70-77, 2011.
  17. A. Gladisch, C. Lange, and R. Leppla, "Power efficiency of optical versus electronic access networks," in Proc. 34th Eur. Conf. Exhibition on Optical Commun., pp. 1-4, Bruxel, Belgium, Sept. 2008.
  18. J. Baliga, R. Ayre, M. V. Sorin, K. Hinton, and R. S. Tucker, "Energy consumption in access network," in Proc. Optical Fiber Commun./National Fiber Optic Eng. Conf., pp. 1-3, San Diego, California, USA, Feb. 2008.
  19. V. C. Coroama, L. M. Hilty, E. Heiri, and F. M. Horn, "The direct energy demand of internet data flows," J. Ind. Ecology, vol. 17, no. 5, pp. 680-688, 2013. https://doi.org/10.1111/jiec.12048
  20. V. C. Coroama, C. Schien, C. Preist, and L. M. Hilty, "The energy intensity of the internet: Home and access networks ICT innovations for sustainability," Advances in Intell. Syst. Comput., vol. 310, pp. 137-155, 2015. https://doi.org/10.1007/978-3-319-09228-7_8
  21. U. Bryan, R. Verena, R. Kurt, Energy Consumption of Consumer Electronics in U. S. Homes in 2010, Fraunhofer USA Center for Sustainable Energy Systems, Dec. 2011.
  22. U. Bryan, S. Victoria, L. Brian, and R. Kurt, Energy Consumption of Consumer Electronics in U. S. Homes in 2013, Fraunhofer USA Center for Sustainable Energy Systems, Jun. 2014.
  23. H. Gregg, S. Jeffrey, W. Philip, D. Debbie, and D. Katherine, Small Network Equipment Energy Consumption in U. S. Homes Using Less Energy to Connect Electronic Devices, The Natural Resources Defense Council, Jun. 2013.
  24. California Energy Commission, Small Network Equipment, California Energy Commission, Jul. 2013.
  25. 2014 ECONET Consortium. low Energy COnsumption NETworks (ECOnet) Deliverable D6.5 Benchmarking and Performance Evaluation Result(2014), Retrieved Jul., 12, 2016, from http://www.econet-project.eu
  26. R. Bolla, ECOnet low Energy Consumption NETworks, Presentation at National Inter-University Consortium for Telecommunications (CNIT), Oct. 2010.
  27. MEF, Technology action plan: Buildings sector energy efficiency 2009, The United States in consultation with Major economies Forum on Energy and Climate (MEF) Partners, 2009.
  28. European Communities, Gas and electricity market statistics 2005, European Communities, 2005.
  29. 42U Data Center Solution, Retrieved Jul., 12, 2016, from http://www. 42u.com/measurement/pue-dcie.htm
  30. A. Rawson, J. Peuger, and T. Cader, Green grid data center power efficiency metrics: PUE and DCIE, Technical Report White Paper #6, The Green Grid, 2008.
  31. M. Stansberry and J. Kudritzki, 2012 Data Center industry survey technical report, Uptime Institute, 2012.
  32. B. Nordman, "What the real world tells us about saving energy in electronics," in Proc. the 1st Berkeley Symp. Energy Efficient Electronic Systems (E3S), University of California, Berkeley, USA, Jun. 2009.
  33. IEA(International Energy Agency), $CO_2$ emissions from fuel combustion highlights, IEA, 2013.
  34. Australian Government, Department of Climate Change and Energy Eciency Estimate of energy wasted by network-connected equipment final report. Australian Government, 2011.
  35. IEA(International Energy Agency), Electricity Information 2010, Jul. 2010.
  36. Electricity Consumption by County, Energy Consumption Data Management System of the California Energy Commission, Retrieved Jul., 12, 2016, from http://www.ecdms.energy.ca.gov/elecbycounty.aspx
  37. Lawrence Berkeley National Laboratory (LBNL), FY 2012 LBNL Site Sustainability Plan, LBNL, Dec. 2011.
  38. Lawrence Berkeley National Laboratory (LBNL), LBNL Site Sustainability Plan for FY 2011, LBNL, Dec. 2010.
  39. U. S. Department of Energy, 2010 Buildings Energy Data Book, U.S. Department of Energy, Mar. 2011.
  40. P. Cota and T. Pavicic, "New technologies for improvement of characteristics in DSL access networks," in Proc. Int. Convention on Inf. and Commun. Technol., pp. 511-516, Opatija, Croatia, May 2011.
  41. H. Mellah and B. Sanso, "Routers vs switches, How much more power do they really consume? A datasheet analysis," in Proc. WoWMoM, pp. 1-6, Lucca, Tuscany, Italy, Jun. 2011.
  42. California Public Utilities Commission and California Energy Commission, Energy Efficiency: California's Highest-Priority Resource, Jun. 2006.
  43. Steven Chu interviewed by Larry Klein and published in NOVA Online Jan. 20, 2009, Retrieved Jul., 12, 2016, from http://www.pbs. org/wgbh/nova/tech/energy-secretary-chu.html.
  44. L. Ettenson, Energy efficiency: California's leading energy resource, Electric Light and Power, Nov. 2011.
  45. C. Mitchell, R. Deumling, and G. Court, Stabilizing California's Demand: The Real Reasons Behind the States's Energy Savings, Public Util. Fortnightly, pp. 50-62, Mar. 2009.
  46. A. Levinson, "California energy efficiency: Lesson for the rest of the world, or not?," J. Econ. Behavior & Org., vol. 207, pp. 269-289, 2014.
  47. A. Sudarshan, "Deconstructing the resenfeld curve: making sense of california's low electricity intensity," Energy Econ., vol. 39, pp. 197-207, 2013. https://doi.org/10.1016/j.eneco.2013.05.002