DOI QR코드

DOI QR Code

Narrow-Band Jamming Signal Cancellation Algorithm for GPS Receivers

GPS 수신기에서 적용 가능한 효과적인 협대역 전파방해 신호 제거 알고리즘

  • Lee, In-seok (Korea University Department of Computer science and Engineering) ;
  • Oh, Seong-jun (Korea University Graduate School of Information Security) ;
  • Han, Jin-hee (TelAce, Inc.)
  • Received : 2016.05.20
  • Accepted : 2016.08.09
  • Published : 2016.08.31

Abstract

The Global Positioning System is a navigation system that has been developed by the United States for military use. Currently, many countries, including the Republic of Korea, use GPS for civilian and military uses. However, as useful as it is, GPS is vulnerable to its Jamming signal, as the strength of the signal from satellites is very weak. In this paper, a novel jamming signal detection and cancellation method is proposed when a narrow-band jamming signal is included in the GPS received signal. At the GPS receiver, the received signal is transformed to a frequency domain sample by Fast Fourier Transform. In order to suppress the Spectral Leakage, the Blackman-Harris window is used. The proposed jamming signal cancellation algorithm will find the frequency sample with maximum power and null the maximum sample in addition to some lateral samples. If the GPS receiver is designed with FFT of size 128 to 512, it is shown that 42 samples are optimal to cancel the narrow-band jamming signal.

GPS(Global Positioning System)는 미국에서 군사목적으로 이용하기 위해 개발된 위치측정 시스템으로, 현재는 우리나라를 포함한 각 국에서 군용뿐만 아니라 민간에도 유용하게 쓰이고 있다. 하지만 GPS는 위성으로부터 지면에 도달하는 신호의 세기가 매우 약해서 전파방해신호(Jamming Signal)에 약하다는 단점을 가진다. 본 논문에서는 수신된 GPS 신호에 협대역의 전파방해 신호가 존재한다고 가정하고, 새로운 협대역 전파방해신호 제거 알고리즘을 제안한다. 우선, GPS 수신기에서 수신한 신호를 FFT를 이용하여 주파수 성분으로 표현하며, FFT로 인하여 발생하는 Spectral Leakage의 영향을 줄이기 위하여 Blackman-Harris window를 적용한다. Blackman-Harris window의 주파수 응답을 형태를 이용하여, 가장 큰 파워를 가지는 주파수 성분을 찾고 그 주변으로 일정한 개수의 성분을 제거하는 알고리즘을 제안하였다. 주로 쓰일만한 128~512포인트의 FFT를 사용할 시에 고정적으로 최대값 주변의 42개의 성분을 제거하는 것이 가장 최적임을 알 수 있었다.

Keywords

References

  1. E. D. Kaplan, Understanding GPS; Principles and Applications, Artech House, 2002.
  2. B. Parkinson and J. Spilker, Global Positioning System: Theory and Applications, AIAA, 1996.
  3. D. W. Lim, "Case study of incidents by GPS interferences and trend for monitoring techniques," Current Ind. Technol. Trends in Aerospace, vol. 11, no. 1, pp. 129-176, Jul. 2013.
  4. H. Hu and N. Wei, "A study of GPS jamming and anti-jamming," in Proc. 2009 PEITS, pp. 388-391, Shenzhen, China, Dec. 2009.
  5. S. K. Jeong, T. H. Kim, C. S. Sin, and S. U. Lee, "Technical trends of smart jamming for GPS signal," 2012 ETRI Electron. Telecommun. Trends, vol. 27, no. 6, pp. 75-82, Dec. 2012.
  6. S. L. Cho, C. S. Park, S. W. Hwang, Y. S. Choi, J. H. Lee, S. J. Lee, J. K. Pack, D. K. Lee, and G. I. Jee, "Development of a GNSS signal generator considering reception environment of a vehicle," J. KICS, vol. 37, no. 9, pp. 811-820, Sept. 2012.
  7. S. M. Seo, "Design of an anti-jamming five-element planar GPS array antenna," The J. Korean Inst. Electromagnetic Eng. Sci., vol. 25, no. 6, pp. 628-636, Jun. 2014. https://doi.org/10.5515/KJKIEES.2014.25.6.628
  8. R. L. Fante and J. J. Vaccaro, "Enhanced anti-jam capability for GPS receivers," in Proc. ION GPS 1998, pp. 251-254, Nashville, TN, Sept. 1998.
  9. J. S. Han, K. Y. Kim, S. J. Kim, H. D. Kim, and H. J. Choi, "Analysis of adaptive digital signal processing for anti-jamming GPS system," J. KICS, vol. 32, no. 8, pp. 745-757, Aug. 2007.
  10. Y. Lu, J. Yang, Z. Ding, and Z. Tan, "The orthogonal weighted algorithm for GPS receiver anti-jamming," 2001 CIE Int. Conf. Radar, pp. 1190-1194, Beijing, China, Oct. 2001.
  11. W. Huang, D. Lu, R. Wu, and Z. Su, "A novel blind GPS anti-jamming algorithm based on subspace technique," 2006 8th Int. Conf. Sign. Process., Beijing, China, Nov. 2006.
  12. W. Sun and M. G. Amin, "A self-coherence anti-jamming GPS receiver," IEEE Trans. Sign. Process., vol. 53, no. 10, pp. 3910-3915, Oct. 2005. https://doi.org/10.1109/TSP.2005.855428
  13. K. Y. Kim, "Analysis of anti-jamming techniques for satellite navigation systems," J. KICS, vol. 38, no. 12, pp. 1216-1227, Dec. 2013.
  14. R. C. DiPietro, "An FFT-based technique for supperssing narrowband interference in PN spread-spectrum communications systems," in ICASSP'89, pp. 1360-1363, Glasgow, Scotland, UK, May 1989.
  15. T. Capozza, "A single-chip narrow-band frequency-domain excisor for a global positioning system (GPS) receiver" in IEEE J. Solid-State Cir., vol. 35, no. 3, pp. 401-411, Mar. 2000. https://doi.org/10.1109/4.826823
  16. F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform," in Proc. IEEE, vol. 66, no. 1, pp. 51-83, Jan. 1978. https://doi.org/10.1109/PROC.1978.10837
  17. J. O. Kim, J. S. Bae, and K. W. Song, A method and apparatus to improve anti-jamming and to eliminate jamming in a GPS system by adjusting additional threshold value in the frequency domain, patent application number: 10-2010-0014870, Aug. 2010
  18. M. Y. Shin, C. S. Park, H. K. Lee, D. Y. Lee, D. H. Hwang, and S. J. Lee, "A narrowband interference excision algorithm in the frequency domain for GNSS receivers," KINPR Int. Symp. GPS/GNSS, vol. 2, pp. 359-364, Jeju Island, Korea, Oct. 2006.
  19. I. S. Lee, J. W. Park, and S. J. Oh, "A study on FFT/IFFT processor design for narrowband jamming signal cancellation," in Proc. KICS Winter Conf., pp. 793-794, Jan. 2016.

Cited by

  1. 근접한 두 GPS 수신기의 의사거리 차 분석 vol.41, pp.12, 2016, https://doi.org/10.7840/kics.2016.41.12.1756
  2. 수신기 수평적 위치의 표본 분산에 따른 GPS 재방송 재밍 신호 검출 기법 vol.41, pp.12, 2016, https://doi.org/10.7840/kics.2016.41.12.1759
  3. 항재밍 3차원 GPS 배열 안테나를 위한 Mutual coupling 보상 및 재밍 방향탐지 알고리즘 vol.42, pp.4, 2016, https://doi.org/10.7840/kics.2017.42.4.723
  4. 보안 마이크로 웹페이지 기반 전장 스마트 지도 vol.12, pp.4, 2016, https://doi.org/10.14372/iemek.2017.12.4.259
  5. QR 태그 기반 전장 스마트 지도에서의 자료 추상화 vol.23, pp.3, 2016, https://doi.org/10.9717/kmms.2020.23.3.440