DOI QR코드

DOI QR Code

AAO (Anodized Aluminium Oxide) template 제조 및 이를 이용해 제조한 탄소 및 산화 금속 나노 섬유 물질에 관한 연구

The Study of Manufacturing the AAO Template and Fabrication of Carbon and Metal Oxide Nanofibers using AAO Template

  • 김청 (충북대학교 공업화학과) ;
  • 박수길 (충북대학교 공업화학과)
  • Kim, Cheong (Department of Engineering Chemistry, Chungbuk National University) ;
  • Park, Soo-Gil (Department of Engineering Chemistry, Chungbuk National University)
  • 투고 : 2016.08.17
  • 심사 : 2016.08.30
  • 발행 : 2016.08.31

초록

In this study, we manufactured the anodized alumina oxide (AAO) template and fabricated the carbon nanofibers and manganese oxide nanofibers using AAO template for application to electrochemical capacitor. Pore diameters of the AAO template were increased from 50 to 90 nm by increasing the acid treatment time after two-step anodizing process. Furthermore nanofibers, which is fabricated by AAO template, showed uniform diameter and micro structure. It is suggested that the surface area is larger than commercial electrode material and it is enhancing the energy density by increasing the specific capacitance.

키워드

참고문헌

  1. F. Sun, J. Gao, X. Liu, L. Wang, Y. Yang, X. Pi, S. We and Y. Qin, High-energy Li-ion hybrid supercapacitor enabled by a long life Ni-rich carbon based anode, Electrochim. Acta, 213 (2016) 626-632. https://doi.org/10.1016/j.electacta.2016.08.004
  2. J. H. Kim, H. J. Choi, H. K. Kim, S. H. Lee and Y. H. Lee, A hybrid supercapacitor fabricated with an activated carbon as cathode and an urchinlike $TiO_2$ as anode, Inter. J. Hydrogen Energy, 41 (2016) 13549-13556. https://doi.org/10.1016/j.ijhydene.2016.06.018
  3. C. Kim, H. Habazaki and S. G. Park, Improved Properties of $Li_4Ti_5O_2$ (LTO) by Surface Modification with Carbon Nanotube (CNT), J. Korean Inst. Surf. Eng., 49 (2016) 191-195. https://doi.org/10.5695/JKISE.2016.49.2.191
  4. H. Chen, D. Liu, Z. Shen, B. Bao, S. Zhao and L. Wu, Functional Biomass Carbons with Hierarchical Porous Structure for Super capacitor Electrode Materials, Electrochim. Acta, 180 (2015) 241-251. https://doi.org/10.1016/j.electacta.2015.08.133
  5. Q. Zhou, C. Jia, X. Ye, Z. Tang and Z. Wan, A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics, J. Power Sources, 327 (2016) 365-373. https://doi.org/10.1016/j.jpowsour.2016.07.048
  6. T. Ariyanto, B. Dyatkin, G. R. Zhang, A. Kern, Y. Gogotsi and B. J. M. Eyzold, Synthesis of carbon coreeshell pore structures and their performance as supercapacitors, Mictoporous and Mesoporous Materials 218 (2015) 130-136. https://doi.org/10.1016/j.micromeso.2015.07.007
  7. N. G. Bretesche, O. Crosnier, F. Favier and T. Brousse, Improving the Volumetric Energy Density of Supercapacitors, Eletrochim. Acta, 206 (2016) 458-463. https://doi.org/10.1016/j.electacta.2016.01.171
  8. E. Kovalska and C. Kocabas, Organic electrolytes for graphene-based supercapacitor: Liquid, gelor solid, Materials Today Communications, 7 (2016) 155-160. https://doi.org/10.1016/j.mtcomm.2016.04.013
  9. L. Shi, X. Li, Y. Jia, D. Kong, H. He, M. Wagner, K. Mullen and L. Zhi, Continuous carbon nanofiber bundles with tunable pore structures and functions for weavable fibrous supercapacitors, Energy Storage Materials, 5 (2016) 43-39. https://doi.org/10.1016/j.ensm.2016.05.009
  10. Z. Liu, F. Teng, C. Chang, Y. Teng, S. Wang, W. Gu, Y. Fan, W. Yao and Y. Zhu, Charge storage performances of micro-supercapacitor predominated by two-dimensional (2D) crystal structure, Nano Energy, 27 (2016) 58-67. https://doi.org/10.1016/j.nanoen.2016.06.025
  11. Z. Y. Li, M. S. Akhtar and O. B. Yang, Supercapacitors with ultrahigh energy density based on mesoporous carbon nanofibers: Enhanced double-layer electrochemical properties, J. Alloys. Compounds, 653 (2015) 212-218. https://doi.org/10.1016/j.jallcom.2015.08.275
  12. F. Sun, J. Gao, X. Liu, X. Pi, Y. Yang and S. Wu, Porous carbon with a large surface area and an ultrahigh carbonpurity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials, Applied Surface Science, 387 (2016) 857-863. https://doi.org/10.1016/j.apsusc.2016.06.176
  13. M. W. Liao and C. K. Chung, Growth of porous anodized alumina on the sputtered aluminum films with 2D-3D morphology for high specific surface area, Applied Surface Science, 309 (2014) 290-294. https://doi.org/10.1016/j.apsusc.2014.05.033
  14. S. Zhang, B. Yin, Z. Wang and F. Peter, Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and a-$Fe_2O_34 nanorods, Chemical Engineering Journal, 306 (2016) 193-203. https://doi.org/10.1016/j.cej.2016.07.057
  15. J. Xu, Z. Ju, J. Cao, W. Wang, C. Wang and Z. Chen, Microwave synthesis of nitrogen-doped mesoporous carbon/nickel cobalt hydroxide microspheres for high-performance supercapacitors, J. Alloys. Compounds, 689 (2016) 489-499. https://doi.org/10.1016/j.jallcom.2016.08.006
  16. H. Wei, J. Wang, L. Yu, Y. Zhang, D. Hou and T. Li, Facile synthesis of $NiMn_2O_4$ nanosheet arrays grown on nickel foam as novel electrode materials for high-performance supercapacitors, Ceramics International, 42 (2016) 14963-14969. https://doi.org/10.1016/j.ceramint.2016.06.140
  17. O. Jessensky, F. Muller, and U. Gosele, Selforganized formation of hexagonal pore arrays in anodic alumina, Appl. Phy. Lett., 72 (1998) 1173- 1175. https://doi.org/10.1063/1.121004
  18. J. W. Diggle, T. C. Downie and C. W. Goulding, Anodic oxide films on aluminium, Chem. Rev. 69 (1968) 365-405.