DOI QR코드

DOI QR Code

A CFD Modeling of Heat Generation and Charge-Discharge Behavior of a Li-ion Secondary Battery

Li-ion 이차전지의 충방전 시 발열 및 충방전 특성의 CFD 모델링

  • Kang, Hyeji (Department of Chemical Engineering, Kwangwoon University) ;
  • Park, Hongbeom (Department of Chemical Engineering, Kwangwoon University) ;
  • Han, Kyoungho (Department of Chemical Engineering, Kwangwoon University) ;
  • Yoon, Do Young (Department of Chemical Engineering, Kwangwoon University)
  • 강혜지 (광운대학교 공과대학 화학공학과) ;
  • 박홍범 (광운대학교 공과대학 화학공학과) ;
  • 한경호 (광운대학교 공과대학 화학공학과) ;
  • 윤도영 (광운대학교 공과대학 화학공학과)
  • Received : 2016.08.16
  • Accepted : 2016.09.05
  • Published : 2016.08.31

Abstract

This study investigates a CFD modeling of the charge-discharge behavior due to heat generation during charge-discharge cycles of a Li-ion secondary battery(LIB). Present LIB system adopted a current-density equation, heat and mass transfer governing equations upon the 1-dimensional system to the thickness direction for the rectangular pouch configuration. According to the 3-kinds of the charge-discharge current densities of 1C($17.5A/m^2$), 3C($52.5A/m^2$) and 5C($87.5A/m^2$) subject to a 3 V of cut-off voltage, a constant-temperature system at 298 K and three different heat generating systems were analyzed with comparison. Battery capacity decreases with increment of charge-discharge densities not only at the constant-temperature system but also at the heat-generating system. The time for charge-discharge cycles increases at the heat-generating system compare to the constant-temperature system. These trends are considered that the increase of temperature due to heat generation causes the decrement of equilibrium potential of electrodes and the increment of diffusivity of Li ions. Furthermore, cooling effects were discussed in order to control the influence of heat generation due to charge-discharge behavior of a Li-ion secondary battery.

본 연구에서는 리튬이온전지의 충방전시 발생하는 발열특성을 CFD 모델링하고, 발열에 따른 충방전 특성을 해석하였다. 리튬이온전지는 직교 파우치형 구조로서 두께방향으로의 1차원계로 설정하여, 전류밀도 방정식, 열 및 물질전달 지배방정식을 도입하였다. Cut-off 전압이 3 V에서 충방전 전류밀도가 1C($17.5A/m^2$), 3C($52.5A/m^2$) 와 5C($87.5A/m^2$)에 대하여, 298K의 등온계와 충방전 전류밀도 별 발열계로 각각 설정하였다. 등온계와 발열계에서 모두 충방전 전류밀도가 높을수록 전지의 용량은 감소되는 것으로 나타났다. 등온계에 비하여 발열계에서 충방전 시간이 증가하였으며, 이는 발열에 의한 온도의 증가로 인해 전극의 평형전위가 감소하고, 리튬이온의 확산계수가 증가하기 때문인 것으로 고려된다. 또한, 리튬이온전지의 충전과 방전에 의한 열 발생 영향을 제어하기 위한 냉각효과를 분석하였다.

Keywords

References

  1. J.K. Park et. al., "Principles and Applications of Lithium Secondary Batteries", Hongreung Scientific Press (2010).
  2. D. Bernardi, E. Pawlikowski, J. Newman, "A general energy balance for battery systems", J. Electrochem. Soc., 132, 5 (1985). https://doi.org/10.1149/1.2113792
  3. M. Doyle, T.F. Fuller, J. Newman, "Modeling of galvanostatic charge and discharge of the Lithium/Polymer/Insertion cell", J. Electrochem. Soc. 140, 1526 (1993). https://doi.org/10.1149/1.2221597
  4. A. Funahashi, Y. Kida, K. Yanagida, T. Nohma, I. Yonezu, "Thermal simulation of large-scale lithium secondary batteries using a graphite-coke hybrid carbon negative electrode and $LiNi_{0.7}Co_{0.3}O_2$ positive electrode", J. Power sources, 104, 248 (2002). https://doi.org/10.1016/S0378-7753(01)00958-2
  5. Feng Leng, Cher Ming Tan, Michael Pecht, "Effect of temperature on the aging rate of Li ion battery operating above room temperature", Scientific Reports, 12967 (2015).
  6. Dong Hyup Jeon, Seung Man Back, "Thermal modeling of cylindrical lithium ion battery during discharge cycle", Energy Conversion and Management, 52, 2973 (2011). https://doi.org/10.1016/j.enconman.2011.04.013
  7. Yonghuang Ye, Yixiang Shi, Ningsheng Cai, Jianjun Lee, Xianming He, "Electro-thermal modeling and experimental validation for lithium ion battery", Elsevier, 199, 227-238 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.027
  8. S. Al Hallaj, H. Maleki, J. S Hong, J. R. Selman "Thermal modeling and design considerations of lithium-ion batteries", Journal of Power Sources, 83, 1 (1999). https://doi.org/10.1016/S0378-7753(99)00178-0
  9. D.H. Lee, D.Y. Yoon, "Computational modeling of charge-discharge characteristics of lithium-ion batteries", J. Energy Engineering, 20, 278 (2011). https://doi.org/10.5855/ENERGY.2011.20.4.278
  10. D.H. Lee, D.Y. Yoon, "Evaluation modeling heat generation behavior for lithium-ion battery using FEMLAB", Clean Technology, 8, 320 (2012).
  11. Valoen, L. O., and Reimers, J. N., "Transport properties of LiPF6-based Li-ion battery electrolytes" J. Electrochem. Soc., 152, A882 (2005). https://doi.org/10.1149/1.1872737
  12. Marc Doyle, John Newman, Antoni S. Gozdz, Caroline N. Schmutz and Jean-Marie Tarascon, "Comparison of modeling predictions with experimental data from plastic lithium ion cells", J. Electrochem. Soc., 143, 1890 (1996). https://doi.org/10.1149/1.1836921
  13. Karthikeyan Kumaresan, Godfrey Sikha, and Ralph E. White, "Thermal model for a Li-ion cell", Journal of The Electrochemical Society, 155, A164 (2008). https://doi.org/10.1149/1.2817888