References
- Bengio, Y. (2009). Learning deep architectures for AI, Foundations and Trends in Machine Learning, 2, 1-127. https://doi.org/10.1561/2200000006
- Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for Scientic Computing Conference (SciPy).
- Camps-Valls, G., Tuia, D., Bruzzone, L., and Atli Benediktsson, J. (2014). Advances in hyperspectral image classification: Earth monitoring with statistical learning methods, Signal Processing Magazine, IEEE, 31, 45-54.
- Chen, Y., Lin, Z., Zhao, X., Wang, G., and Gu, Y. (2014). Deep learning-based classification of hyperspectral data, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2094-2107. https://doi.org/10.1109/JSTARS.2014.2329330
- Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Book in preparation for MIT Press. Retrieved from http://www.deeplearningbook.org.
- Gualtieri, J. A. and Chettri, S. (2000). Support vector machines for classification of hyperspectral data. In Geoscience and Remote Sensing Symposium, 2000. Proceedings. IGARSS 2000. IEEE 2000 International, 2, 813-815.
- Hinton, G. (2010). A practical guide to training restricted Boltzmann machines, Momentum, 9, 926.
- Hinton, G., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets, Neural Computation, 18, 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
- Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks, Science, 313, 504-507. https://doi.org/10.1126/science.1127647
- Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors, arXiv preprint arXiv:1207.0580.
- Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, 1097-1105.
- LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition, Neural Computation, 1, 541-551. https://doi.org/10.1162/neco.1989.1.4.541
- LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. In Proceedings of the IEEE, 86, 2278-2324.
- Masci, J., Meier, U., Ciresan, D., and Schmidhuber, J. (2011). Stacked convolutional auto-encoders for hierarchical feature extraction. In Articial Neural Networks and Machine Learning-ICANN 2011 (pp. 52-59), Springer.
- Melgani, F. and Lorenzo, B. (2004). Classification of hyperspectral remote sensing images with support vector machines, IEEE Transactions on Geoscience and Remote Sensing, 42, 1778-1790. https://doi.org/10.1109/TGRS.2004.831865
- Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), 807-814.
- Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine Learning (pp. 1096-1103), ACM.
- Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, The Journal of Machine Learning Research, 11, 3371-3408.
- Yang, J., Yu, K., Gong, Y., and Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (pp. 1794-1801).