References
- Ashwell, D.G. and Sabir, A.B. (1971), "Limitations of certain curved finite elements when applied to arches", Int. J. Mech. Sci., 13, 133-139. https://doi.org/10.1016/0020-7403(71)90017-8
- Benedetti, A. and Tralli, A. (1989), "A new hybrid F.E. model for arbitrarily curved beam-i. linear analysis", Comput. Struct., 33(6), 1437-1449. https://doi.org/10.1016/0045-7949(89)90484-7
- Choi, J.K. and Lim, J.K. (1993), "Simple curved shear beam elements", Commun. Numer. Meth. Eng., 9, 659-669. https://doi.org/10.1002/cnm.1640090805
- Choi, J.K. and Lim, J.K. (1995), "General curved beam elements based on the assumed strain fields", Comput. Struct., 55(3), 379-386. https://doi.org/10.1016/0045-7949(95)98865-N
- Dawe, D.J. (1974), "Curved finite elements for the analysis of shallow and deep arches", Comput. Struct., 4, 559-580. https://doi.org/10.1016/0045-7949(74)90007-8
- Eisenberger, M. and Efraim, E. (2001), "In-plane vibrations of shear deformable curved beams", Int. J. Numer. Meth. Eng., 52, 1221-1234. https://doi.org/10.1002/nme.246
- Gimena, L., Gonzaga, P. and N. Gimena, F. (2010), "Forces, moments, rotations, and displacements of polynomial-shaped curved beams", Int. J. Struct. Stab. Dyn., 10(1), 77-89. https://doi.org/10.1142/S0219455410003336
- Gonzaga, P., Gimena, F.N. and Gimena, L. (2014), "Stiffness and transfer matrix analysis in global coordinates of a 3D curved beam", J. Struct. Stab. Dyn., 14(7), 1450019. https://doi.org/10.1142/S0219455414500199
- Heppler, G.R. (1992), "An element for studying the vibration of unrestrained curved Timoshenko beams", J. Sound Vib., 158(3), 387-404. https://doi.org/10.1016/0022-460X(92)90416-U
- Ishaquddin, M., Raveendranath, P. and Reddy, J.N. (2013), "Coupled polynomial field approach for elimination of flexure and torsion locking phenomena in the Timoshenko and Euler-Bernoulli curved beam elements", Finite Elem. Anal. Des., 65, 17-31. https://doi.org/10.1016/j.finel.2012.10.005
- Jafari, M. and Mahjoob, M.J. (2010), "An exact three-dimensional beam element with nonuniform cross section", J. Appl. Mech., 77(6), 061009. https://doi.org/10.1115/1.4002000
- Kim, J.G. and Kim, Y.Y. (1998), "A new higher-order hybrid-mixed curved beam element", Int. J. Numer. Meth. Eng., 43, 925-940. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<925::AID-NME457>3.0.CO;2-M
- Kim, J.G. and Lee, J.K. (2008), "Free-vibration analysis of arches based on the hybrid-mixed formulation with consistent quadratic stress functions", Comput. Struct., 86, 1672-1681. https://doi.org/10.1016/j.compstruc.2007.07.002
- Kim, J.G. and Park, Y.K. (2008), "The effect of additional equilibrium stress functions on the three-node hybrid-mixed curved beam element", J. Mech. Sci. Tech., 22, 2030-2037. https://doi.org/10.1007/s12206-008-0752-7
- Kim, J.G., Lee, J.K. and Yoon, H.J. (2014), "On the effect of shear coefficients in free vibration analysis of curved beams", J. Mech. Sci. Tech., 28(8), 3181-3187. https://doi.org/10.1007/s12206-014-0727-9
- Krishnan, A. and Suresh, Y.J. (1998), "A simple cubic linear element for static and free vibration analyses of curved beams", Comput. Struct., 68, 473-489. https://doi.org/10.1016/S0045-7949(98)00091-1
- Lee, P.G. and Sin, H.C. (1994), "Locking-free curved beam element based on curvature", Int. J. Numer. Meth. Eng., 37, 989-1007. https://doi.org/10.1002/nme.1620370607
- Leung, A.Y.T. and Zhu, B. (2004), "Fourier p-elements for curved beam vibrations", Thin Wall. Struct., 42, 39-57. https://doi.org/10.1016/S0263-8231(03)00122-8
- Litewka, P. and Rakowski, J. (1998), "The exact thick arch finite element", Comput. Struct., 68, 369-379. https://doi.org/10.1016/S0045-7949(98)00051-0
- Litewka, P. and Rakowski, J. (2001), "Free vibrations of shear-flexible and compressible arches by FEM", Int. J. Numer. Meth. Eng., 52, 273-286. https://doi.org/10.1002/nme.249
- Meck, H.R. (1980), "An accurate polynomial displacement function for finite ring elements", Comput. Struct., 11, 265-269. https://doi.org/10.1016/0045-7949(80)90076-0
- Pandian, N., Appa Rao, T.V.S.R. and Chandra, S. (1989), "Studies on performance of curved beam finite elements for analysis of thin arches", Comput. Struct., 31(6), 997-1002. https://doi.org/10.1016/0045-7949(89)90284-8
- Raveendranath, P., Singh, G. and Pradhan, B. (1999), "A two-noded locking-free shear flexible curved beam element", Int. J. Numer. Meth. Eng., 44, 265-280. https://doi.org/10.1002/(SICI)1097-0207(19990120)44:2<265::AID-NME505>3.0.CO;2-K
- Raveendranath, P., Singh, G. and Rao, G.V. (2001), "A three-noded shear flexible curved beam element based on coupled displacement field interpolations", Int. J. Numer. Meth. Eng., 51, 85-101. https://doi.org/10.1002/nme.160
- Reddy, J.N. (1993), An Introduction to the Finite Element Method, McGraw-Hill, Inc.
- Sabir, A.B. and Ashwell, D.G. (1971), "A comparison of curved beam finite elements when used in vibration problems", J. Sound Vib., 18(4), 555-563. https://doi.org/10.1016/0022-460X(71)90106-4
- Stolarski, H. and Belytschko, T. (1982), "Membrane locking and reduced integration for curved beams", J. Appl. Mech., 49, 172-176. https://doi.org/10.1115/1.3161961
- Yang, F., Sedaghati, R. and Esmailzadeh, E. (2008), "Free in-plane vibration of general curved beams using finite element method", J. Sound Vib., 318, 850-867. https://doi.org/10.1016/j.jsv.2008.04.041
- Yang, S.Y. and Sin, H.C. (1995), "Curvature-based beam elements for the analysis of Timoshenko and shear-deformable curved beams", J. Sound Vib., 18, 7569-84.
- Zhu, Z.H. and Meguid, S.A. (2008), "Vibration analysis of a new curved beam element", J. Sound Vib., 309, 86-95. https://doi.org/10.1016/j.jsv.2007.04.051
Cited by
- Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures vol.30, pp.6, 2016, https://doi.org/10.12989/scs.2019.30.6.493