DOI QR코드

DOI QR Code

A probabilistic analysis of Miner's law for different loading conditions

  • Blason, Sergio (Engineering Faculty of Gijon, University of Oviedo) ;
  • Correia, Jose A.F.O. (Faculty of Engineering, University of Porto) ;
  • Jesus, Abilio M.P. De (Faculty of Engineering, University of Porto) ;
  • Calcada, Rui A.B. (Faculty of Engineering, University of Porto) ;
  • Fernandez-Canteli, Alfonso (Engineering Faculty of Gijon, University of Oviedo)
  • 투고 : 2016.01.13
  • 심사 : 2016.07.12
  • 발행 : 2016.10.10

초록

In this paper, the normalized variable V=(log N-B)(log ${\Delta}{\sigma}-C$-C), as derived from the probabilistic S-N field of Castillo and Canteli, is taken as a reference for calculation of damage accumulation and probability of failure using the Miner number in scenarios of variable amplitude loading. Alternative damage measures, such as the classical Miner and logarithmic Miner, are also considered for comparison between theoretical lifetime prediction and experimental data. The suitability of this approach is confirmed for it provides safe lifetime prediction when applied to fatigue data obtained for riveted joints made of a puddle iron original from the Fao bridge, as well as for data from experimental programs published elsewhere carried out for different materials (aluminium and concrete specimens) under distinct variable loading histories.

키워드

과제정보

연구 과제 주관 기관 : Portuguese Science Foundation (FCT)

참고문헌

  1. ASME (2010), ASME Boiler and Pressure Vessel Code, NY, USA.
  2. Beretta, S. and Regazzi, D. (2015), "Probabilistic fatigue assessment for railway axles and derivation of a simple format for damage calculations", Int. J. Fatig., 86, 13-23.
  3. Birnbaum, Z.W. and Saunders, S.C. (1968), "A probabilistic interpretation of Miner's rule", SIAM J. Appl. Math., 16(3), 637-652. https://doi.org/10.1137/0116052
  4. Castillo, E. (1988), Extreme value theory in Engineering, Academic Press, San Diego Ca.
  5. Castillo, E. and Fernandez‐Canteli A. (2009), A Unified Statistical Methodology for Modeling Fatigue Damage, Springer.
  6. Castillo, E. and Fernandez-Canteli A. (2011), Statistical models for damage accumulation, Encyclopedia of Statistical Sciences, Chapter 5, John Wiley & Sons.
  7. CEN-TC 250 (2003), EN 1993-1-9: Eurocode 3, Design of steel structures - Part 1-9: Fatigue, European Committee for Standardization, Brussels.
  8. Changfeng, T., Liang, W. and Qiang, Z. (2012), "Fatigue reliability analysis on the concrete beams", Proceedings of 2012 International Conference on Mechanical Engineering and Material Science (MEMS 2012), Published by Atlantis Press, 289-391.
  9. Correia, J.A.F.O., De Jesus, A.M.P., Fernandez-Canteli, A. and Calcada, R.A.B. (2015), "Fatigue damage assessment of a riveted connection made of puddle iron from the Fao Bridge using the modified probabilistic interpretation technique", Procedia Eng., 114, 760-767. https://doi.org/10.1016/j.proeng.2015.08.023
  10. De Jesus, A.M.P., Silva, A.L.L. and Correia J.A.F.O. (2014), "Fatigue of riveted and bolted joints made of puddle iron - A numerical approach", J. Constr. Steel Res., 102, 164-177. https://doi.org/10.1016/j.jcsr.2014.06.012
  11. De Jesus, A.M.P., Silva, A.L.L. and Correia, J.A.F.O. (2015), "Fatigue of riveted and bolted joints made of puddle iron - An experimental approach", J. Constr. Steel Res., 104, 81-90. https://doi.org/10.1016/j.jcsr.2014.10.012
  12. Derbanne, Q., Rezende, F., Hauteclocque, G. and Chen, X.B. (2011), "Evaluation of rule-based fatigue design loads associated at a new probability level", Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference, Maui, Hawaii, USA, June.
  13. Dowling, N.E. (1993), Mechanical behaviour of materials. Engineering methods for deformation, fracture and fatigue, Prentice Hall.
  14. El-Tawil, K. and Jaoude, A.A. (2013), "Stochastic and nonlinear based prognostic model", Syst. Sci. Control Eng., 1(1), 66-81. https://doi.org/10.1080/21642583.2013.850754
  15. EN13445 (2009), Unfired Pressure Vessel Code, European Standard.
  16. Fernandez-Canteli, A. (1982), "Statistical interpretation of the Miner-number using an index of probability of total damage", Fatigue of Steel and Concrete Structures, IABSE, Zurich.
  17. Fernandez-Canteli, A., Blason, S., Correia, J.A.F.O. and De Jesus, A.M.P. (2014), "A probabilistic interpretation of the Miner number for fatigue life prediction", Frattura ed Integrita Strutturale, 30, 327-339.
  18. Fernandez-Canteli, A., Przybilla, C., Nogal, M., Lopez Aenlle, M. and Castillo, E. (2014), "ProFatigue: A software program for probabilistic assessment of experimental fatigue data sets", Procedia Eng., 74, 236-241. https://doi.org/10.1016/j.proeng.2014.06.255
  19. Hardrath, H.F. and Utley, E.C. Jr. (1952), "An experimental investigation of the behavior of 24S-T4 aluminum alloy subjected to repeated stresses of constant and varying amplitudes", NACA TN 2798.
  20. Holmen, J.O. (1979), "Fatigue of concrete by constant and variable amplitude loading", Institutt for Betongkonstruksjoner, Norges Tekniske Hogskole, Universitet i Trondheim.
  21. Imam, B., Righiniotis, T. and Chryssanthopoulos, M. (2008), "Probabilistic fatigue evaluation of riveted railway bridges", J. Bridge Eng., 13(3), 237244.
  22. Kim, J.H., Zi, G., Van, S.N., Jeong, M., Kong, J. and Kim, M. (2011), "Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model", Struct. Eng. Mech., 38(4), 443-457. https://doi.org/10.12989/sem.2011.38.4.443
  23. Liang, Y. and Chen, W. (2015), "A regularized Miner's rule for fatigue reliability analysis with Mittag-Leffler statistics", Int. J. Damage Mech., doi: 10.1177/1056789515607610.
  24. Liu, Y. and Mahadevan, S. (2007), "Stochastic fatigue damage modeling under variable amplitude loading", Int. J. Fatigue, 29, 1149-1161. https://doi.org/10.1016/j.ijfatigue.2006.09.009
  25. Mechab, B., Chama, M., Kaddouri, K. and Slimani, D. (2016), "Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch", Steel Compos. Struct., 20(6), 1173-1182. https://doi.org/10.12989/scs.2016.20.6.1173
  26. Meeker, W.Q. and Escobar, L.A. (1998), Statistical Methods for Reliability Data, Wiley Series in Probability and statistics, New York.
  27. Miner, M.A. (1945), "Cumulative damage in fatigue", Tran. ASME. Ser. E. J. Appl. Mech., 12, 159-164.
  28. Nallasivam, K., Talukdar, S. and Dutta, A. (2008), "Fatigue life prediction of horizontally curved thin walled box girder steel bridges", Struct. Eng. Mech., 28(4), 387-410. https://doi.org/10.12989/sem.2008.28.4.387
  29. Park, Y. and Kang, D.H. (2013), "Fatigue reliability evaluation technique using probabilistic stress-life method for stress range frequency distribution of a steel welding member", J. Vibroeng., 15(1), 77-89.
  30. Pascual, F.G. and Meeker, W.Q. (1999), "Estimating fatigue curves with the random fatigue-limit model (with discussion)", Technometrics, 41, 277-302. https://doi.org/10.1080/00401706.1999.10485925
  31. Pereira, H.F.S.G. (2006), "Fatigue behaviour of structural components under the action of variable amplitude loading", MSc in Mechanical Engineering, FEUP. (in Portuguese)
  32. Pereira, H.F.S.G., De Jesus, A.M.P., Fernandes, A.A. and Ribeiro A.S. (2008), "Analysis of fatigue damage under block loading in a low carbon steel", Strain, 44, 429-439. https://doi.org/10.1111/j.1475-1305.2007.00389.x
  33. Pereira, H.F.S.G., De Jesus, A.M.P., Ribeiro, A.S. and Fernandes A.A. (2009), "Cyclic and Fatigue Behavior of the P355NL1 Steel under Block Loading", J. Press. Ves. Tech., 131(2), 021210. https://doi.org/10.1115/1.3062965
  34. Rathod, V., Yadav, O.P., Rathore, A. and Jain, R. (2011), "Probabilistic modeling of fatigue damage accumulation for reliability prediction", Int. J. Qual. Statist. Reliab., 2011, Article ID 718901, 10.
  35. Schijve, J. (2005), "Statistical distribution functions and fatigue of structures", Int. J. Fatigue, 27, 1031-1039. https://doi.org/10.1016/j.ijfatigue.2005.03.001
  36. Sendín, A., Lopez Aenlle, M. and Fernandez-Canteli, A. (2011), "A contribution to a probabilistic interpretation of fatigue design codes. Towards a probabilistic design approach", VHCF5 Very High Cycle Fatigue Conference, Berlin, June.
  37. Shokrieh, M.M., Esmkhani, M. and Taheri-Behrooz, F. (2014), "Fatigue modeling of chopped strand mat/epoxy composites", Struct. Eng. Mech., 50(2), 231-240. https://doi.org/10.12989/sem.2014.50.2.231
  38. Smith, K.N., Watson, P. and Topper, T.H. (1970), "A stress-strain function for the fatigue of metals", J. Mater., 5(4), 767-78.
  39. Sun, Q., Dui, H.N. and Fan, X.L. (2014), "A statistically consistent fatigue damage model based on Miner's rule", Int. J. Fatigue, 69, 16-21. https://doi.org/10.1016/j.ijfatigue.2013.04.006
  40. Tee, K.F., Khan, L.R. and Chen, H.P. (2013), "Probabilistic failure analysis of underground flexible pipes", Struct. Eng. Mech., 47(2), 167-183. https://doi.org/10.12989/sem.2013.47.2.167
  41. Tian, H. and Li, F. (2016), "Probabilistic-based prediction of lifetime performance of RC bridges subject to maintenance interventions", Comput. Concrete, 17(4), 499-521. https://doi.org/10.12989/cac.2016.17.4.499
  42. Van Leeuwen, J. and Siemes, A.J.M. (1977), "Fatigue of concrete", Report No B 76-443/04.2.6013, Tables, TNO-IBBC, Delft.
  43. Van Leeuwen, J. and Siemes, A.J.M. (1979), "Miner's rule with respect to plain concrete", Stevin-Laboratory of the Department of Civil Engineering of the Delft University of Technology.
  44. Ye, X.W., Su, Y.H., Xi, P.S., Chen, B. and Han, J.P. (2016), "Statistical analysis and probabilistic modeling of WIM monitoring data of an instrumented arch bridge", Smart Struct. Syst., 17(6), 1087-1105. https://doi.org/10.12989/sss.2016.17.6.1087
  45. Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201
  46. Zhu, J., Chen, C. and Han, Q. (2014), "Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges", Struct. Eng. Mech., 49(2), 203-223. https://doi.org/10.12989/sem.2014.49.2.203

피인용 문헌

  1. Probabilistic fatigue life prediction and reliability assessment of a high pressure turbine disc considering load variations 2018, https://doi.org/10.1177/1056789517737132
  2. Fatigue reliability assessment of turbine discs under multi-source uncertainties 2018, https://doi.org/10.1111/ffe.12772
  3. The theory of the S-N fatigue damage envelope: generalization of linear, double-linear, and non-linear fatigue damage models 2018, https://doi.org/10.1016/j.ijfatigue.2018.01.023
  4. A one-parameter nonlinear fatigue damage accumulation model vol.98, 2017, https://doi.org/10.1016/j.ijfatigue.2017.01.039
  5. A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades vol.10, pp.5, 2017, https://doi.org/10.3390/ma10050513
  6. On the need to adopt strain-based probabilistic approach in predicting fatigue life vol.40, pp.2, 2018, https://doi.org/10.1007/s40430-018-1000-4
  7. A new nonlinear fatigue damage model based only on S-N curve parameters vol.103, 2017, https://doi.org/10.1016/j.ijfatigue.2017.06.017
  8. Generalized probabilistic model allowing for various fatigue damage variables vol.100, 2017, https://doi.org/10.1016/j.ijfatigue.2017.03.031
  9. Methodology to evaluate fatigue damage under multiaxial random loading vol.185, 2017, https://doi.org/10.1016/j.engfracmech.2017.04.012
  10. Tether analyses of offshore triceratops under wind, wave and current 2018, https://doi.org/10.1007/s40868-018-0043-9
  11. An accurate fatigue damage model for welded joints subjected to variable amplitude loading vol.276, 2017, https://doi.org/10.1088/1757-899X/276/1/012038
  12. Experimental Study on Variable-Amplitude Fatigue of Welded Cross Plate-Hollow Sphere Joints in Grid Structures vol.2018, pp.1687-8442, 2018, https://doi.org/10.1155/2018/8431584
  13. A methodology for a global-local fatigue analysis of ancient riveted metallic bridges vol.9, pp.3, 2018, https://doi.org/10.1108/IJSI-07-2017-0047
  14. FE simulation of S-N curves for a riveted connection using two-stage fatigue models vol.2, pp.4, 2016, https://doi.org/10.12989/acd.2017.2.4.333
  15. Strain energy-based fatigue life prediction under variable amplitude loadings vol.66, pp.2, 2016, https://doi.org/10.12989/sem.2018.66.2.151
  16. Probabilistic S-N fields based on statistical distributions applied to metallic and composite materials: State of the art vol.11, pp.8, 2016, https://doi.org/10.1177/1687814019870395
  17. Tether analyses of offshore triceratops under ice force due to continuous crushing vol.4, pp.1, 2019, https://doi.org/10.1007/s41062-019-0212-5
  18. A method for fatigue testing of equine McIII subchondral bone under a simulated fast workout training programme vol.52, pp.2, 2020, https://doi.org/10.1111/evj.13163
  19. Probabilistic model of fatigue damage accumulation of materials based on the principle of failure probability equivalence vol.28, pp.None, 2016, https://doi.org/10.1016/j.istruc.2020.09.023
  20. Design optimization focused on failures during developmental testing of the fabricated rear-axle housing vol.120, pp.None, 2016, https://doi.org/10.1016/j.engfailanal.2020.104999
  21. Fatigue performance prediction of Al-alloy 2024 plates in riveted joint structure vol.126, pp.None, 2021, https://doi.org/10.1016/j.engfailanal.2021.105439
  22. An investigation on fatigue behavior of AA2024 aluminum alloy sheets in fuselage lap joints vol.126, pp.None, 2021, https://doi.org/10.1016/j.engfailanal.2021.105457
  23. Effect of fisheye failure on material performance inducing error circle under high cycles vol.30, pp.10, 2016, https://doi.org/10.1177/10567895211020068