Acknowledgement
Supported by : Portuguese Science Foundation (FCT)
References
- ASME (2010), ASME Boiler and Pressure Vessel Code, NY, USA.
- Beretta, S. and Regazzi, D. (2015), "Probabilistic fatigue assessment for railway axles and derivation of a simple format for damage calculations", Int. J. Fatig., 86, 13-23.
- Birnbaum, Z.W. and Saunders, S.C. (1968), "A probabilistic interpretation of Miner's rule", SIAM J. Appl. Math., 16(3), 637-652. https://doi.org/10.1137/0116052
- Castillo, E. (1988), Extreme value theory in Engineering, Academic Press, San Diego Ca.
- Castillo, E. and Fernandez‐Canteli A. (2009), A Unified Statistical Methodology for Modeling Fatigue Damage, Springer.
- Castillo, E. and Fernandez-Canteli A. (2011), Statistical models for damage accumulation, Encyclopedia of Statistical Sciences, Chapter 5, John Wiley & Sons.
- CEN-TC 250 (2003), EN 1993-1-9: Eurocode 3, Design of steel structures - Part 1-9: Fatigue, European Committee for Standardization, Brussels.
- Changfeng, T., Liang, W. and Qiang, Z. (2012), "Fatigue reliability analysis on the concrete beams", Proceedings of 2012 International Conference on Mechanical Engineering and Material Science (MEMS 2012), Published by Atlantis Press, 289-391.
- Correia, J.A.F.O., De Jesus, A.M.P., Fernandez-Canteli, A. and Calcada, R.A.B. (2015), "Fatigue damage assessment of a riveted connection made of puddle iron from the Fao Bridge using the modified probabilistic interpretation technique", Procedia Eng., 114, 760-767. https://doi.org/10.1016/j.proeng.2015.08.023
- De Jesus, A.M.P., Silva, A.L.L. and Correia J.A.F.O. (2014), "Fatigue of riveted and bolted joints made of puddle iron - A numerical approach", J. Constr. Steel Res., 102, 164-177. https://doi.org/10.1016/j.jcsr.2014.06.012
- De Jesus, A.M.P., Silva, A.L.L. and Correia, J.A.F.O. (2015), "Fatigue of riveted and bolted joints made of puddle iron - An experimental approach", J. Constr. Steel Res., 104, 81-90. https://doi.org/10.1016/j.jcsr.2014.10.012
- Derbanne, Q., Rezende, F., Hauteclocque, G. and Chen, X.B. (2011), "Evaluation of rule-based fatigue design loads associated at a new probability level", Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference, Maui, Hawaii, USA, June.
- Dowling, N.E. (1993), Mechanical behaviour of materials. Engineering methods for deformation, fracture and fatigue, Prentice Hall.
- El-Tawil, K. and Jaoude, A.A. (2013), "Stochastic and nonlinear based prognostic model", Syst. Sci. Control Eng., 1(1), 66-81. https://doi.org/10.1080/21642583.2013.850754
- EN13445 (2009), Unfired Pressure Vessel Code, European Standard.
- Fernandez-Canteli, A. (1982), "Statistical interpretation of the Miner-number using an index of probability of total damage", Fatigue of Steel and Concrete Structures, IABSE, Zurich.
- Fernandez-Canteli, A., Blason, S., Correia, J.A.F.O. and De Jesus, A.M.P. (2014), "A probabilistic interpretation of the Miner number for fatigue life prediction", Frattura ed Integrita Strutturale, 30, 327-339.
- Fernandez-Canteli, A., Przybilla, C., Nogal, M., Lopez Aenlle, M. and Castillo, E. (2014), "ProFatigue: A software program for probabilistic assessment of experimental fatigue data sets", Procedia Eng., 74, 236-241. https://doi.org/10.1016/j.proeng.2014.06.255
- Hardrath, H.F. and Utley, E.C. Jr. (1952), "An experimental investigation of the behavior of 24S-T4 aluminum alloy subjected to repeated stresses of constant and varying amplitudes", NACA TN 2798.
- Holmen, J.O. (1979), "Fatigue of concrete by constant and variable amplitude loading", Institutt for Betongkonstruksjoner, Norges Tekniske Hogskole, Universitet i Trondheim.
- Imam, B., Righiniotis, T. and Chryssanthopoulos, M. (2008), "Probabilistic fatigue evaluation of riveted railway bridges", J. Bridge Eng., 13(3), 237244.
- Kim, J.H., Zi, G., Van, S.N., Jeong, M., Kong, J. and Kim, M. (2011), "Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model", Struct. Eng. Mech., 38(4), 443-457. https://doi.org/10.12989/sem.2011.38.4.443
- Liang, Y. and Chen, W. (2015), "A regularized Miner's rule for fatigue reliability analysis with Mittag-Leffler statistics", Int. J. Damage Mech., doi: 10.1177/1056789515607610.
- Liu, Y. and Mahadevan, S. (2007), "Stochastic fatigue damage modeling under variable amplitude loading", Int. J. Fatigue, 29, 1149-1161. https://doi.org/10.1016/j.ijfatigue.2006.09.009
- Mechab, B., Chama, M., Kaddouri, K. and Slimani, D. (2016), "Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch", Steel Compos. Struct., 20(6), 1173-1182. https://doi.org/10.12989/scs.2016.20.6.1173
- Meeker, W.Q. and Escobar, L.A. (1998), Statistical Methods for Reliability Data, Wiley Series in Probability and statistics, New York.
- Miner, M.A. (1945), "Cumulative damage in fatigue", Tran. ASME. Ser. E. J. Appl. Mech., 12, 159-164.
- Nallasivam, K., Talukdar, S. and Dutta, A. (2008), "Fatigue life prediction of horizontally curved thin walled box girder steel bridges", Struct. Eng. Mech., 28(4), 387-410. https://doi.org/10.12989/sem.2008.28.4.387
- Park, Y. and Kang, D.H. (2013), "Fatigue reliability evaluation technique using probabilistic stress-life method for stress range frequency distribution of a steel welding member", J. Vibroeng., 15(1), 77-89.
- Pascual, F.G. and Meeker, W.Q. (1999), "Estimating fatigue curves with the random fatigue-limit model (with discussion)", Technometrics, 41, 277-302. https://doi.org/10.1080/00401706.1999.10485925
- Pereira, H.F.S.G. (2006), "Fatigue behaviour of structural components under the action of variable amplitude loading", MSc in Mechanical Engineering, FEUP. (in Portuguese)
- Pereira, H.F.S.G., De Jesus, A.M.P., Fernandes, A.A. and Ribeiro A.S. (2008), "Analysis of fatigue damage under block loading in a low carbon steel", Strain, 44, 429-439. https://doi.org/10.1111/j.1475-1305.2007.00389.x
- Pereira, H.F.S.G., De Jesus, A.M.P., Ribeiro, A.S. and Fernandes A.A. (2009), "Cyclic and Fatigue Behavior of the P355NL1 Steel under Block Loading", J. Press. Ves. Tech., 131(2), 021210. https://doi.org/10.1115/1.3062965
- Rathod, V., Yadav, O.P., Rathore, A. and Jain, R. (2011), "Probabilistic modeling of fatigue damage accumulation for reliability prediction", Int. J. Qual. Statist. Reliab., 2011, Article ID 718901, 10.
- Schijve, J. (2005), "Statistical distribution functions and fatigue of structures", Int. J. Fatigue, 27, 1031-1039. https://doi.org/10.1016/j.ijfatigue.2005.03.001
- Sendín, A., Lopez Aenlle, M. and Fernandez-Canteli, A. (2011), "A contribution to a probabilistic interpretation of fatigue design codes. Towards a probabilistic design approach", VHCF5 Very High Cycle Fatigue Conference, Berlin, June.
- Shokrieh, M.M., Esmkhani, M. and Taheri-Behrooz, F. (2014), "Fatigue modeling of chopped strand mat/epoxy composites", Struct. Eng. Mech., 50(2), 231-240. https://doi.org/10.12989/sem.2014.50.2.231
- Smith, K.N., Watson, P. and Topper, T.H. (1970), "A stress-strain function for the fatigue of metals", J. Mater., 5(4), 767-78.
- Sun, Q., Dui, H.N. and Fan, X.L. (2014), "A statistically consistent fatigue damage model based on Miner's rule", Int. J. Fatigue, 69, 16-21. https://doi.org/10.1016/j.ijfatigue.2013.04.006
- Tee, K.F., Khan, L.R. and Chen, H.P. (2013), "Probabilistic failure analysis of underground flexible pipes", Struct. Eng. Mech., 47(2), 167-183. https://doi.org/10.12989/sem.2013.47.2.167
- Tian, H. and Li, F. (2016), "Probabilistic-based prediction of lifetime performance of RC bridges subject to maintenance interventions", Comput. Concrete, 17(4), 499-521. https://doi.org/10.12989/cac.2016.17.4.499
- Van Leeuwen, J. and Siemes, A.J.M. (1977), "Fatigue of concrete", Report No B 76-443/04.2.6013, Tables, TNO-IBBC, Delft.
- Van Leeuwen, J. and Siemes, A.J.M. (1979), "Miner's rule with respect to plain concrete", Stevin-Laboratory of the Department of Civil Engineering of the Delft University of Technology.
- Ye, X.W., Su, Y.H., Xi, P.S., Chen, B. and Han, J.P. (2016), "Statistical analysis and probabilistic modeling of WIM monitoring data of an instrumented arch bridge", Smart Struct. Syst., 17(6), 1087-1105. https://doi.org/10.12989/sss.2016.17.6.1087
- Zhang, Y. (2015), "A fuzzy residual strength based fatigue life prediction method", Struct. Eng. Mech., 56(2), 201-221. https://doi.org/10.12989/sem.2015.56.2.201
- Zhu, J., Chen, C. and Han, Q. (2014), "Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges", Struct. Eng. Mech., 49(2), 203-223. https://doi.org/10.12989/sem.2014.49.2.203
Cited by
- Probabilistic fatigue life prediction and reliability assessment of a high pressure turbine disc considering load variations 2018, https://doi.org/10.1177/1056789517737132
- Fatigue reliability assessment of turbine discs under multi-source uncertainties 2018, https://doi.org/10.1111/ffe.12772
- The theory of the S-N fatigue damage envelope: generalization of linear, double-linear, and non-linear fatigue damage models 2018, https://doi.org/10.1016/j.ijfatigue.2018.01.023
- A one-parameter nonlinear fatigue damage accumulation model vol.98, 2017, https://doi.org/10.1016/j.ijfatigue.2017.01.039
- A New Energy-Critical Plane Damage Parameter for Multiaxial Fatigue Life Prediction of Turbine Blades vol.10, pp.5, 2017, https://doi.org/10.3390/ma10050513
- On the need to adopt strain-based probabilistic approach in predicting fatigue life vol.40, pp.2, 2018, https://doi.org/10.1007/s40430-018-1000-4
- A new nonlinear fatigue damage model based only on S-N curve parameters vol.103, 2017, https://doi.org/10.1016/j.ijfatigue.2017.06.017
- Generalized probabilistic model allowing for various fatigue damage variables vol.100, 2017, https://doi.org/10.1016/j.ijfatigue.2017.03.031
- Methodology to evaluate fatigue damage under multiaxial random loading vol.185, 2017, https://doi.org/10.1016/j.engfracmech.2017.04.012
- Tether analyses of offshore triceratops under wind, wave and current 2018, https://doi.org/10.1007/s40868-018-0043-9
- An accurate fatigue damage model for welded joints subjected to variable amplitude loading vol.276, 2017, https://doi.org/10.1088/1757-899X/276/1/012038
- Experimental Study on Variable-Amplitude Fatigue of Welded Cross Plate-Hollow Sphere Joints in Grid Structures vol.2018, pp.1687-8442, 2018, https://doi.org/10.1155/2018/8431584
- A methodology for a global-local fatigue analysis of ancient riveted metallic bridges vol.9, pp.3, 2018, https://doi.org/10.1108/IJSI-07-2017-0047
- FE simulation of S-N curves for a riveted connection using two-stage fatigue models vol.2, pp.4, 2016, https://doi.org/10.12989/acd.2017.2.4.333
- Strain energy-based fatigue life prediction under variable amplitude loadings vol.66, pp.2, 2016, https://doi.org/10.12989/sem.2018.66.2.151
- Probabilistic S-N fields based on statistical distributions applied to metallic and composite materials: State of the art vol.11, pp.8, 2016, https://doi.org/10.1177/1687814019870395
- Tether analyses of offshore triceratops under ice force due to continuous crushing vol.4, pp.1, 2019, https://doi.org/10.1007/s41062-019-0212-5
- A method for fatigue testing of equine McIII subchondral bone under a simulated fast workout training programme vol.52, pp.2, 2020, https://doi.org/10.1111/evj.13163
- Probabilistic model of fatigue damage accumulation of materials based on the principle of failure probability equivalence vol.28, pp.None, 2016, https://doi.org/10.1016/j.istruc.2020.09.023
- Design optimization focused on failures during developmental testing of the fabricated rear-axle housing vol.120, pp.None, 2016, https://doi.org/10.1016/j.engfailanal.2020.104999
- Fatigue performance prediction of Al-alloy 2024 plates in riveted joint structure vol.126, pp.None, 2021, https://doi.org/10.1016/j.engfailanal.2021.105439
- An investigation on fatigue behavior of AA2024 aluminum alloy sheets in fuselage lap joints vol.126, pp.None, 2021, https://doi.org/10.1016/j.engfailanal.2021.105457
- Effect of fisheye failure on material performance inducing error circle under high cycles vol.30, pp.10, 2016, https://doi.org/10.1177/10567895211020068