References
- Bayat, M., Pakar, I. and Bayat, M. (2013), "On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams", Steel Compos. Struct., 14(1), 2013.
- Fertis, D.G. (2006), Nonlinear structural engineering with unique theories and methods to solve effectively complex nonlinear problems, Springer.
- Hoseini, S.H., Pirbodaghi, T., Ahmadian, M.T. and Farrahi, G.H., (2009), "On the large amplitude free vibrations of tapered beams: an analytical approach", Mech. Res. Commun., 36, 892-897. https://doi.org/10.1016/j.mechrescom.2009.08.003
- Kumar, R., Ramachandra, L.S. and Roy, D. (2004), "Techniques based on generic algorithms for large deflection analysis of beams", Sadhana, 29(6), 589-604. https://doi.org/10.1007/BF02901474
- Kumar, R., Ramachandra, L.S. and Roy, D. (2006), "A multi-step linearization techniques for a class of bending value problems in non-linear mechanics", Comput. Mech., 39, 73-81. https://doi.org/10.1007/s00466-005-0009-6
- Merli, R., Lazaro, S., Monleon, S. and Domingo, A. (2010), "Comparison of two linearization schemes for the nonlinear bending problem of a beam pinned at both ends", Int. J. Solid. Struct., 47, 865-874. https://doi.org/10.1016/j.ijsolstr.2009.12.001
- Pakar, I. and Bayat, M. (2013), "An analytical study of nonlinear vibrations of buckled Euler-Bernoulli beams", Acta Physica Polonica A, 123(1), 1-5.
- Ramachandra, L.S. and Roy, D. (2001), "A new method for nonlinear two-point boundary value problems in solid mechanics", ASME, J. Appl. Mech., 68, 776-785. https://doi.org/10.1115/1.1387444
- Ramachandra, L.S. and Roy, D. (2002), "The locally transversal linearization (LTL) method revisited a simple error analysis", J. Sound Vib., 256(3), 579-589. https://doi.org/10.1006/jsvi.2001.4222
- Roy, D. and Kumar, R. (2005), "A multi-step transversal linearization (MLT) method in non-linear structural dynamics", J. Sound Vib., 287, 203-226. https://doi.org/10.1016/j.jsv.2004.11.032
- Shahidi, M., Bayat, M., Pakar, I. and Abdollahzadeh,G.R. (2011), "Solution of free non-linear vibration of beams", Int. J. Phys. Sci., 6(7), 1628-1634..
- Singh, G., Sharma, A. and Venkateswara Rao, G. (1990), "Large-amplitude free vibrations of beams-A discussion on various formulations and assumptions", J. Sound Vib., 142(1), 77-85. https://doi.org/10.1016/0022-460X(90)90583-L
- Thankane, K.S. and Stys, T. (2009), "Finite difference method for beam equation with free ends using Mathematica", South. Africa J. Pure Appl. Math., 4, 61-78.
- Timoshenko, S. and Goodier, J. N. (1952), Theory of Elasticity, McGraw-Hill.
- Viswanath, A. and Roy, D. (2007), "Multi-step transversal and tangential linearization methods applied to a class of nonlinear beam equations", Int. J. Solid. Struct., 44, 4872-4891. https://doi.org/10.1016/j.ijsolstr.2006.12.008
Cited by
- Multi-objective topology and geometry optimization of statically determinate beams vol.70, pp.3, 2016, https://doi.org/10.12989/sem.2019.70.3.367