DOI QR코드

DOI QR Code

Modeling of Pore Coarsening in the Rim Region of High Burn-up UO2 Fuel

  • Xiao, Hongxing (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China) ;
  • Long, Chongsheng (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China)
  • Received : 2015.09.04
  • Accepted : 2016.02.22
  • Published : 2016.08.25

Abstract

An understanding of the coarsening process of the large fission gas pores in the high burn-up structure (HBS) of irradiated $UO_2$ fuel is very necessary for analyzing the safety and reliability of fuel rods in a reactor. A numerical model for the description of pore coarsening in the HBS based on the Ostwald ripening mechanism, which has successfully explained the coarsening process of precipitates in solids is developed. In this model, the fission gas atoms are treated as the special precipitates in the irradiated $UO_2$ fuel matrix. The calculated results indicate that the significant pore coarsening and mean pore density decrease in the HBS occur upon surpassing a local burn-up of 100 GWd/tM. The capability of this model is successfully validated against irradiation experiments of $UO_2$ fuel, in which the average pore radius, pore density, and porosity are directly measured as functions of local burn-up. Comparisons with experimental data show that, when the local burn-up exceeds 100 GWd/tM, the calculated results agree well with the measured data.

Keywords

References

  1. M.V. Speight, A calculation on the size distribution of intragranular bubbles in irradiated $UO_2$, J. Nucl. Mater. 38 (1971) 236-238. https://doi.org/10.1016/0022-3115(71)90051-1
  2. J. Rest, G.L. Hofman, Dynamics of irradiation-induced grain subdivision and swelling in $U_3Si_2$ and $UO_2$ fuels, J. Nucl. Mater. 210 (1994) 187-202. https://doi.org/10.1016/0022-3115(94)90237-2
  3. D.R. Olander, D. Wongsawaeng, Re-solution of fission gas - A review: Part I. Intragranular bubbles, J. Nucl. Mater. 354 (2006) 94-109. https://doi.org/10.1016/j.jnucmat.2006.03.010
  4. M. Lemes, A. Soba, A. Denis, An empirical formulation to describe the evolution of the high burnup structure, J. Nucl. Mater. 456 (2015) 174-181. https://doi.org/10.1016/j.jnucmat.2014.09.048
  5. C.B. Lee, Y.H. Jung, An attempt to explain the high burnup structure formation mechanism in $UO_2$ fuel, J. Nucl. Mater. 279 (2000) 207-215. https://doi.org/10.1016/S0022-3115(00)00021-0
  6. V.V. Rondinella, T. Wiss, The high burn-up structure in nuclear fuel, Mater. Today 13 (2010) 24-32.
  7. H.J. Matzke, On the rim effect in high burnup $UO_2$LWR fuels, J. Nucl. Mater. 189 (1992) 141-148. https://doi.org/10.1016/0022-3115(92)90428-N
  8. M. Amaya, J. Nakamura, T. Fuketa, Y. Kosaka, Relationship between changes in the crystal lattice strain and thermal conductivity of high burnup $UO_2$ pellets, J. Nucl. Mater. 396 (2010) 32-42. https://doi.org/10.1016/j.jnucmat.2009.10.049
  9. J.O. Barner, High Burn-up Effects Program Final Report, HBEP-61, Battelle Pacific Northwest Laboratories, Washington, 1990.
  10. M. Kinoshita, High Burn-Up Rim Project, (II) Irradiation and Examination to Investigate Rim-Structured Fuel, in: Pro. In. Topical Meeting on LWR Fuel Performance, ANS, Park City, Utah, 2000.
  11. T. Sonoda, M. Kinoshita, N. Ishikawa, M. Sataka, A. Iwase, K. Yasunaga, Clarification of high density electronic excitation effects on the microstructural evolution in $UO_2$, Nucl. Instrum. Meth. B 268 (2010) 3277-3281. https://doi.org/10.1016/j.nimb.2010.06.015
  12. K. Lassmann, C.T. Walker, J. Van de Laar, F. Lindstrom, Modelling the high burnup $UO_2$ structure in LWR fuel, J. Nucl. Mater. 226 (1995) 1-8. https://doi.org/10.1016/0022-3115(95)00116-6
  13. J. Spino, D. Papaioannou, Lattice contraction in the rim zone as controlled by recrystallization: additional evidence, J. Nucl. Mater. 372 (2008) 416-420. https://doi.org/10.1016/j.jnucmat.2007.03.173
  14. J. Rest, Derivation of analytical expressions for the network dislocation density, change in lattice parameter, and for the recrystallized grain size in nuclear fuels, J. Nucl. Mater. 349 (2006) 150-159. https://doi.org/10.1016/j.jnucmat.2005.10.007
  15. J. Noirot, L. Desgranges, J. Lamontagne, Detailed characterisations of high burn-up structures in oxide fuels, J. Nucl. Mater. 372 (2008) 318-339. https://doi.org/10.1016/j.jnucmat.2007.04.037
  16. M. Kovac, Evaluation of the middle part of the nuclear fuel, Nucl. Eng. Tech. 48 (2016) 169-174. https://doi.org/10.1016/j.net.2015.08.010
  17. H. Matzke, J. Spino, Formation of the rim structure in high burnup fuel, J. Nucl. Mater. 248 (1997) 170-179. https://doi.org/10.1016/S0022-3115(97)00171-2
  18. M. Kinoshita, K. Yasunaga, T. Sonoda, A. Iwase, N. Ishikawa, M. Sataka, K. Yasuda, S. Matsumura, H.Y. Geng, T. Ichinomiya, Y. Chen, Y. Kaneta, M. Iwasawa, T. Ohnuma, Y. Nishura, J. Nakamura, H. Matzke, Recovery and restructuring induced by fission energy ions in high burnup nuclear fuel, Nucl. Instrum. Meth. B 267 (2008) 960-963.
  19. K. Nogita, K. Une, Radiation-induced microstructural change in high burnup $UO_2$ fuel pellets, Nucl. Instrum. Meth. B 91 (1994) 301-306. https://doi.org/10.1016/0168-583X(94)96235-9
  20. J. Jonnet, P.V. Uffelen, D. Staticu, T. Wiss, Towards a better understanding of the role of stress in restructuring of radiation damage, in: Pro. of 18th Int. Conf. on Structural Mechanics in Reactor Technology, IASMIRT, Beijing, China, 2005, p. 606.
  21. H.Xiao, C. Long,H.Chen,Model forevolutionof grainsizeinthe rim region of high burnup $UO_2$ fuel, J. Nucl.Mater. 471 (2016) 74-79. https://doi.org/10.1016/j.jnucmat.2016.01.006
  22. P.V. Uffelen, R.J.M. Konings, C. Vitanza, J. Tulenko, Analysis of reactor fuel rod behavior, in: D. Cacuci (Ed.), Handbook of Nuclear Engineering, Vol. 3, Springer, Heidelberg, Germany, 2010. Chapter 21.
  23. G. Khvostov, V. Novikov, A. Medvedev, S. Bogatyr, Approaches to modeling of high burn-up structure and analysis of its effects on the behavior of light water reactor fuels in the START-3 fuel performance code, in: Presented at the 2005 Water reactor fuel performance, JNS-ENS-ANS meeting, Kyoto, Japan, October 2-6, 2005.
  24. J. Spino, A.D. Stalios, H. Santa Cruz, D. Baron, Stereological evolution of the rim structure in PWR-fuels at prolonged irradiation: dependencies with burn-up and temperature, J. Nucl. Mater. 354 (2006) 66-84. https://doi.org/10.1016/j.jnucmat.2006.02.095
  25. P.F.P. Fichtner, H. Schroeder, H. Trinkhaus, A simulation study of Ostwald ripening of gas bubbles in metals accounting for real gas behaviour, Acta Metall. Mater. 39 (1991) 1845-1852. https://doi.org/10.1016/0956-7151(91)90153-R
  26. S.K. Tyler, P.J. Goodhew, Direct evidence for the Brownian motion of helium bubbles, J. Nucl. Mater. 92 (1980) 201-206. https://doi.org/10.1016/0022-3115(80)90103-8
  27. H. Schroeder, P.F.P. Fichtner, On the coarsening mechanisms of helium bubbles-Ostwald ripening versus migration and coalescence, J. Nucl. Mater 179-181 (1991) 1007-1010. https://doi.org/10.1016/0022-3115(91)90261-5
  28. I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids 19 (1961) 35-50. https://doi.org/10.1016/0022-3697(61)90054-3
  29. C. Wagner, Theory of precipitate change by redissolution, Elektrochem 65 (1961) 581-591.
  30. M. Schwind, J. Agren, A random walk approach to Ostwald ripening, Acta Mater. 49 (2001) 3821-3828. https://doi.org/10.1016/S1359-6454(01)00273-7
  31. T. Philippe, P.W. Voorhees, Ostwald ripening in multicomponent alloys, Acta Mater. 61 (2013) 4237-4244. https://doi.org/10.1016/j.actamat.2013.03.049
  32. K. Nogita, K. Une, Irradiation-induced recrystallization in high burnup $UO_2$ fuel, J. Nucl. Mater. 226 (1995) 302-310. https://doi.org/10.1016/0022-3115(95)00123-9
  33. K. Une, S. Kashibe, A. Takagi, Fission gas release behavior from high burnup $UO_2$ fuels under rapid heating conditions, J. Nucl. Sci. Technol. 43 (2006) 1161-1171. https://doi.org/10.1080/18811248.2006.9711208
  34. J.R. Willis, R. Bullough, The interaction of finite gas bubbles in a solid, J. Nucl. Mater. 32 (1969) 76-87. https://doi.org/10.1016/0022-3115(69)90143-3
  35. A.B. Kaplun, A.B. Meshalkin, Thermodynamic validation of the form of unified equation of state for liquid and gas, High Temperature 41 (2003) 319-326. https://doi.org/10.1023/A:1024230324555
  36. X.H. Xing, L.C. Sheng, A modified equation of state for Xe at high pressures by molecular dynamics simulation, Chin. Phys. B 23 (2014) 020502. https://doi.org/10.1088/1674-1056/23/2/020502
  37. P. Losonen, Modelling intragranular fission gas release in irradiation of sintered LWR $UO_2$ fuel, J. Nucl. Mater. 304 (2002) 29-49. https://doi.org/10.1016/S0022-3115(02)00856-5
  38. J.A. Turnbull, R.M. Cornell, The re-solution of fission-gas atoms from bubbles during the irradiation of $UO_2$ at an elevated temperature, J. Nucl. Mater. 41 (1971) 156-160. https://doi.org/10.1016/0022-3115(71)90075-4
  39. L.C. Bernard, J.L. Jacoud, P. Vesco, An efficient model for the analysis of fission gas release, J. Nucl. Mater. 302 (2002) 125-134. https://doi.org/10.1016/S0022-3115(02)00793-6
  40. J.S. Cheon, Y.H. Koo, B.H. Lee, An extension of the two-zone method for evaluating a fission gas release under an irradiation-induced resolution flux, J. Nucl. Mater. 373 (2008) 280-288. https://doi.org/10.1016/j.jnucmat.2007.06.008
  41. J. Spino, J. Rest, W. Goll, C.T. Walker, Matrix swelling rate and cavity volume balance of $UO_2$ fuels at high burn-up, J. Nucl. Mater. 346 (2005) 131-144. https://doi.org/10.1016/j.jnucmat.2005.06.015
  42. A.J. Markworth, On the coarsening of gas-filled pores in solids, Metall. Trans. 4 (1973) 2651-2656. https://doi.org/10.1007/BF02644271
  43. P. Losonen, Calculation method for diffusional gas release with grain boundary resolution, Nucl. Eng. Des. 201 (2000) 139-153. https://doi.org/10.1016/S0029-5493(00)00295-8
  44. J. Spino, K. Vennix, M. Coquerelle, Detailed characterisation of the rim microstructure in PWR fuels in the burn-up range 40-67 GWd/tM, J. Nucl. Mater. 231 (1996) 179-190. https://doi.org/10.1016/0022-3115(96)00374-1
  45. J. Spino, D. Papaioannou, Lattice parameter changes associated with the rim-structure formation in high burn-up $UO_2$ fuels by micro X-ray diffraction, J. Nucl. Mater. 281 (2000) 146-162. https://doi.org/10.1016/S0022-3115(00)00236-1

Cited by

  1. Modelling of fine fragmentation and fission gas release of UO2 fuel in accident conditions vol.5, pp.None, 2016, https://doi.org/10.1051/epjn/2019030