DOI QR코드

DOI QR Code

Design of an Organic Simplified Nuclear Reactor

  • Shirvan, Koroush (Department of Nuclear Science and Engineering, Massachusetts Institute of Technology) ;
  • Forrest, Eric (Primary Standards Laboratory, Sandia National Laboratories)
  • Received : 2015.12.23
  • Accepted : 2016.02.23
  • Published : 2016.08.25

Abstract

Numerous advanced reactor concepts have been proposed to replace light water reactors ever since their establishment as the dominant technology for nuclear energy production. While most designs seek to improve cost competitiveness and safety, the implausibility of doing so with affordable materials or existing nuclear fuel infrastructure reduces the possibility of near-term deployment, especially in developing countries. The organic nuclear concept, first explored in the 1950s, offers an attractive alternative to advanced reactor designs being considered. The advent of high temperature fluids, along with advances in hydrocracking and reforming technologies driven by the oil and gas industries, make the organic concept even more viable today. We present a simple, cost-effective, and safe small modular nuclear reactor for offshore underwater deployment. The core is moderated by graphite, zirconium hydride, and organic fluid while cooled by the organic fluid. The organic coolant enables operation near atmospheric pressure and use of plain carbon steel for the reactor tank and primary coolant piping system. The core is designed to mitigate the coolant degradation seen in early organic reactors. Overall, the design provides a power density of 40 kW/L, while reducing the reactor hull size by 40% compared with a pressurized water reactor while significantly reducing capital plant costs.

Keywords

References

  1. W.E. Parkins, E.F. Weisner, Organic-moderated reactors for central station power, Trans. of the American Inst. of EE, Part I: Communication and Electronics 77 (1959) 985-993.
  2. R.F. Makens, Organic Coolant Summary Report, IDO-11401, Idaho Operations Office, US Atomic Energy Commission, October 1964.
  3. E. Fermi, L. Szilard, Neutronic reactor, US Patent 2,708,656, issued 1955, Application December 19, 1944.
  4. E.G. Lowell, Organic reactor eyed for nuclear T-7, J. Am. Soc. Nav. Eng. 71 (1959) 723-728.
  5. C.E. Stevenson, J.E. Draley, L.W. Fromm, S. Gordon, H.P. Iskenderian, A.A. Jonke, R.R. Rohde, Organic Nuclear Reactors: An Evaluation of Current Development Programs, ANL-6360, Argonne National Laboratory, May 1961.
  6. D.W. Baries, G.S. Leighton, Direct cycle diphenyl reactor, Trans. Am. Nucl. Soc. 3 (1960) 553-554.
  7. G. Bitelli, S. Grifoni, R. Martinelli, E. Santandrea, R.O.S.P.O. Organic-moderated critical facility International Atomic Energy Agency (IAEA): IAEA.
  8. H. Neltrup, P.L. Olgard, The EXPO exponential facility, in: Proceedings of the IAEA Symposium on Exponential and Critical Experiments, 1963, pp. 383-400.
  9. W. Hage, J. Ligou, G. Riesch, Results of the ESSOR zero-power experiments, in: Proceedings of the IAEA Symposium on Heavy-water Power Reactors, 1967, pp. 655-679.
  10. A.I. Gavrilin, I.G. Lebedev, N.V. Sudakova, V.K. Rizvanov, Changes in the physical and mechanical properties of graphite on irradiation in ditolylmethane, Sov. Atom. Energy 61 (1986) 946-948. https://doi.org/10.1007/BF01122283
  11. D.R. Tegart, Operation of the WR-1 organic cooled research reactor, in: Proceedings of the American Nuclear Society Conference on Reactor Operating Experience, San Juan, Puerto Rico, 1969.
  12. J.L. Weeks, An organic cooled nuclear reactor and its environment, Arch. Environ. Health 23 (1971) 123-128. https://doi.org/10.1080/00039896.1971.10665968
  13. D.K. Sze, I. Sviatoslavsky, M. Sawan, P. Gierszewski, R. Hollies, S. Sharafat, S. Herring, Organic coolant for ARIESIII, in: Second International Symposium on Fusion Nuclear Technology, Karlsruhe, Germany, 1991.
  14. J.B. Romero, Evaluation of Organic Moderator/Coolants for Fusion Breeder Blankets, ANL/FPP/TM-130, Argonne National Laboratory, 1979.
  15. C.A. Trilling, OMRE operating experience, Nucleonics 234 (1959) 113-117.
  16. K.H. Campbell, OMRE operating history and experience, Nucl. Eng. 5 (1960) 53-57.
  17. W.R. McCurnin, Evaluate the Performance of Two OMRE Fourth Core Fuel Elements, NAA-SR-9008, Atomics International, November 1963.
  18. W.E. Nyer, J.H. Rainwater, Experimental Organic Cooled Reactor Conceptual Design, IDO-16570, Idaho National Laboratory, 1959.
  19. G.H. Hanson, IDO-16820, Experimental Organic Cooled Reactor Safety Analysis Report, vol. I-II, Idaho Operations Office, US Atomic Energy Commission, November 1962.
  20. S.M. Stacy, Proving the Principle: A History of the Idaho National Engineering and Environmental Laboratory, 1949-1999, Idaho Operations Office of the Department of Energy, USA, 2000.
  21. E.F. Weisner, Engineering design of piqua OMR, Nucl. Eng. 5 (45) (1960) 68-71.
  22. M.H. Binstock, Fuel Element Design for Piqua OMR, Atomics Int, June 1960. NAA-SR-5119.
  23. K.K. Polushkin, I.Y. Emel'yanov, P.A. Delens, N.V. Zvonov, Y.I. Aleksenko, I.I. Grozdov, S.P. Kuznetsov, A.P. Sirotkin, Y.I. Tokarev, K.P. Lavrovskii, A.M. Brodskii, A.R. Belov, E.V. Borisyuk, V.M. Gryazev, V.D. Tetyukov, D.N. Popov, Y.I. Koryakin, A.G. Filippov, K.V. Petrochuk, V.D. Khoroshavin, N.P. Savinov, M.N. Meshcheryakov, V.P. Pushkarev, V.A. Suroegin, P.A. Gavrilov, L.N. Podlazov, I.N. Pogozhkin, The organic-cooled organic-moderated nuclear power station 'Arbus', Sov. Atom. Energy 17 (6) (1964) 1197-1206. https://doi.org/10.1007/BF01122766
  24. V.A. Tsykanov, Y.V. Chechetkin, Y.P. Kormushkin, I.F. Polivanov, V.P. Pochechura, E.K. Yakshin, R.S. Makin, L.N. Rozhdestvenskaya, V.P. Buntushkin, Experimental nuclear heat supply station based on the Arbus reactor, Sov. Atom. Energy 50 (6) (1981) 333-338. https://doi.org/10.1007/BF01126338
  25. A.J. Mooradian, R.F.S. Robertson, S.R. Hatcher, R.G. Hart, D.R. Tegart, A.J. Summach, Present status of Canadian organic-cooled reactor technology, in: Proceedings of the IAEA Symposium on Heavy-water Power Reactors, Sep. 11-Sep. 15, 1967, pp. 383-398. Vienna, Austria.
  26. E.A. Mason, M.L. Lee, S.T. Brewer, W.N. Bley, Effect of Reactor Irradiation on Santowax OM and WR, MIT-334-94, Department of Nuclear Engineering, Massachusetts Institute of Technology, June 1968.
  27. J.L.Smee, The Chemistry of the X-7 (organic) Loop Coolant, Part I, AECL-2527, Atomic Energy of Canada Limited, January 1966.
  28. H. Mandel, Heavy Water Organic Cooled Reactor: Physical Properties of Some Polyphenyl Coolants, Atom. Int., April 1966. AI-CE-15.
  29. E.R. Booser, CRC Handbook of Lubrication and Tribology, vol. III, CRC Press, Inc., Boca Raton, FL, 1994.
  30. G. Haratyk, K. Shirvan, M. Kazimi, Flexblue$^{(R)}$: a subsea and transportable small modular power plant, in: Proc. of ICAPP'14, Charlotte, USA, 2014.
  31. P. Kasten, R. Adama, R. Carlsmith, R. Chapman, E. Epler, E. Gift, F. Harrington, M. Myers, R. Olson, J. Roberts, R. Solmon, J. Sanders, R. Stone, D. Vondy, C. Walker, T. Washburn, L. Yeatts, F. Zapp, An Evaluation of Heavy- Water-Moderated Organic-Cooled Reactors, ORNL-3921, ORNL, Knoxville, 1967.
  32. Studsvik, CASMO-4E: A Fuel Assembly Burnup Program User's Manual, Studsvik SSP-09/443-U Rev 0 proprietary, 2012.
  33. Fuel design data, Fuel review: design data, Nucl. Eng. Int. 52 (2007) 638. Sciences Module pg. 32.
  34. M.T. Simnad, The U-ZrHx alloy: its properties and use in TRIGA fuel, Nucl. Eng. Des. 64 (1981) 403-422. https://doi.org/10.1016/0029-5493(81)90135-7
  35. R. Van Houten, Selected engineering and fabrication aspects of nuclear metal hydrides (Li, Ti, Zr and Y), Nucl. Eng. Des. 31 (1974) 434-448. https://doi.org/10.1016/0029-5493(75)90178-8
  36. J. Buongiorno, J. Sterbentz, P. MacDonald, Study of solid moderators for the thermal-spectrum supercritical watercooled reactor, Nucl. Technol. 153 (2006) 282-303. https://doi.org/10.13182/NT06-A3708
  37. K. Shirvan, E.C. Forrest, Organically cooled nuclear reactor for enhanced economics and safety, U.S. Patent No. 20,150,348,654. 3 Dec, 2015.
  38. K. Shirvan, R. Ballinger, J. Buongiorno, C. Forsberg, M. Kazimi, N. Todreas, Advanced Offshore Seabed Reactors, MIT-ANPTR-155, MIT, Cambridge, 2014.
  39. CD-Adapco,STAR-CCM+User Guide, Version 10.06.009 (win64/intel15.0er8 Double Precision), CD-adapco, New York, 2015.
  40. R. De Coninck, W. Van Lierde, A. Gijs, Uranium carbide: thermal diffusivity, thermal conductivity and spectral emissivity at high temperatures, J. Nucl. Mater. 54 (1) (1975) 69-76.
  41. L.L. Snead, M. Balden, R.A. Causey, H. Atsumi, High thermal conductivity of graphite fiber silicon carbide composites for fusion reactor application, J. Nucl. Mater. 307-311 (1975) 1200-1204.
  42. L.E. Gardner, W.M. Hutchinson, Reclamation of damaged nuclear reactor coolant by catalytic hydrocracking, I&EC Product Res. Devel. 3 (1) (1964) 28-33. https://doi.org/10.1021/i360009a009
  43. S. Fraysse, S. Huchette, Supply and Demand for Gasoline and Diesel: Part II, Axens Technologies, International Petroleum Refining, 2012, pp. 7-11.
  44. Aspentech [Internet]. ASPENONE V8, 2014. Available from: http://www.aspentech.com/products/.
  45. Experimental Organic Cooled Reactor: Safety Analysis Report, U.S. Atomic Energy Commission, Idaho Operations Office, Idaho Falls, Idaho, 1962.
  46. J. Worner, W. Botzem, S.D. Preston, Heat treatment of graphite and resulting tritium emissions, in: Proceedings of a Technical Committee Meeting on Nuclear Graphite Waste Management, 1999, pp. 1-12.

Cited by

  1. Technology Selection for Offshore Underwater Small Modular Reactors vol.48, pp.6, 2016, https://doi.org/10.1016/j.net.2016.06.002
  2. CONCEPTUAL DESIGN OF AN ORGANIC-COOLED SMALL NUCLEAR REACTOR TO SUPPORT ENERGY DEMANDS IN REMOTE LOCATIONS IN NORTHERN CANADA vol.9, pp.1, 2016, https://doi.org/10.12943/cnr.2019.00002