References
- Y. Lee, G. Park, TAPINS: a thermalehydraulic system code for transient analysis of a fully-passive integral PWR, Nucl. Eng. Technol 45 (2013) 439-458. https://doi.org/10.5516/NET.02.2013.025
- H. Sakashita, Bubble growth rates and nucleation site densities in saturated pool boiling of water at high pressures, J. Nucl. Sci. Technol 48 (2011) 734-743. https://doi.org/10.1080/18811248.2011.9711756
- C.H. Han, P. Griffith, The mechanism of heat transfer in nucleate pool boiling-Part I. Bubble initiation, growth and departure, Int. J. Heat Mass Transf 8 (1965) 887-904. https://doi.org/10.1016/0017-9310(65)90073-6
- R. Cole, H.L. Shulman, Bubble growth rate at high Jakob numbers, Int. J. Heat Mass Transf 9 (1966) 1377-1390. https://doi.org/10.1016/0017-9310(66)90135-9
- H.C. Lee, B.D. Oh, S.W. Bae, M.H. Kim, Single bubble growth in saturated pool boiling on a constant wall temperature surface, Int. J. Multiphase Flow 29 (2003) 1857-1874. https://doi.org/10.1016/j.ijmultiphaseflow.2003.09.003
- M.S. Plesset, S.A. Zwick, The growth of vapor bubbles in superheated fluids, J. Appl. Phys 25 (1954) 493-500. https://doi.org/10.1063/1.1721668
- H.K. Forster, N. Zuber, Growth of a vapor bubble in a superheated liquid, J. Appl. Phys 25 (1954) 474-478. https://doi.org/10.1063/1.1721664
- D.A. Labuntsov, B.A. Kol'chugin, V.S. Golovin, E.A. Zakharova, L.N. Vladimirova, Study of the growth of bubbles during boiling of saturated water within a wide range of pressures by means of high-speed moving pictures, UCS 536.423 1 (1964) 404-409 [translated from Teplofizika Vysokikh Temperatur 2(1964) 446-453].
- M. Akiyama, H. Tachibana, N. Ogawa, Effects of system pressure on bubble growth rate, Trans, JSME 35 (1969) 117-126 [In Japanese]. https://doi.org/10.1299/kikai1938.35.117
- Y. Sato, B. Niceno, A sharp-interface phase change model for a mass-conservative interface tracking method, J. Comput. Phys 249 (2013) 127-161. https://doi.org/10.1016/j.jcp.2013.04.035
- Y. Sato, B. Niceno, A depletable micro-layer for nucleate pool boiling, J. Comput. Phys 300 (2015) 20-52. https://doi.org/10.1016/j.jcp.2015.07.046
- T. Nakamura, R. Tanaka, T. Yabe, K. Takizawa, Exactly conservative semi-Lagrangian scheme for multidimensional hyperbolic equations with directional splitting technique, J. Comput. Phys 174 (2001) 171-207. https://doi.org/10.1006/jcph.2001.6888
- J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys 100 (1992) 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
- K. Yokoi, A practical numerical framework for free surface flows based on CLSVOF method, multi-moment methods and density-scaled CSF model: numerical simulations of droplet splashing, J. Comput. Phys 232 (2013) 252-271. https://doi.org/10.1016/j.jcp.2012.08.034
- B. Niceno, F. Reiterer, A. Ylonen, H.M. Prasser, Simulation of single-phase mixing in fuel rod bundles, using an immersed boundary method, Phys. Scr 88 (2013) 1-13.
- Y. Utaka, Y. Kashiwabara, M. Ozaki, Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure, Int. J. Heat Mass Transf 57 (2013) 222-230. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.031
- P.C. Stephan, C.A. Busse, Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls, Int. J. Heat Mass Transf 35 (1992) 383-391. https://doi.org/10.1016/0017-9310(92)90276-X
- J.H. Lay, V.K. Dhir, Shape of a vapor stem during nucleate boiling of saturated liquids, J. Heat Transf 117 (1995) 394-401. https://doi.org/10.1115/1.2822535
- L.E. Scriven, On the dynamics of phase growth, Chem. Eng. Sci. 10 (1959) 1-13. https://doi.org/10.1016/0009-2509(59)80019-1
Cited by
- Flow behaviour analysis through a venturi designed for industrial and environmental processes vol.4, pp.1, 2016, https://doi.org/10.1007/s41207-018-0093-6
- Modelling of Boiling Flows for Nuclear Thermal Hydraulics Applications-A Brief Review vol.5, pp.3, 2020, https://doi.org/10.3390/inventions5030047