DOI QR코드

DOI QR Code

Effects of Dicarboxylic Acid as an Alternative to Antibiotic on in vitro Rumen Parameters, Milk yield and Milk Compositions in Lactating Cows

항생제 대체제로서 Dicarboxylic Acid 급여가 in vitro 반추위 발효성상, 착유우의 유량 및 유성분에 미치는 영향

  • 남인식 (국립 한경대학교 동물생명환경과학과) ;
  • 안용대 (국립 한경대학교 동물생명환경과학과) ;
  • 정기환 ((주)네스텍) ;
  • 안종호 (한경대학교 동물생명환경과학과)
  • Received : 2016.04.12
  • Accepted : 2016.08.03
  • Published : 2016.08.31

Abstract

This study was undertaken to investigate the effects of dicarboxylic acid supplementation, as replacement antibiotics, of on in vitro ruminal parameters and milk yield and milk composition in lactating cows. in vitro treatments were 1) Con (4 g of basal diet), 2) CM (4 g of basal diet + 0.05 ml of monensin), 3) CR (4 g of basal diet + 0.1 ml of dicarboxylic acid) and in vivo treatments were 1) Con (25 kg of basal diet/head/day), and 2) CR (25 kg of basal diet + 5 g of dicarboxylic acid/head/day), respectively. A total 10 lactating dairy cows ($649{\pm}19kg$ average body weight, $99{\pm}65$ average milking days) were divided in to two groups according to mean milk yield and number of days of postpartum. The cows fed a basal diet during adaptation (2 wk) and experimental diets during the treatment periods (4 wk). In the first in vitro experiment, there were no statistical differences between treatments in pH, gas production, and ammonia-N and lactic acid concentration during incubation. However, dry matter digestibility was significantly higher in CR treatment compared to control or CM treatment (P<0.05). Total VFA was tended to higher in CR treatment than those of control and CM treatment (P>0.05). In the second experiment, milk yield was significantly higher in treatment (40.39 kg) compared to control (35.19 kg), (P<0.05). Milk composition and MUN were not changed by dietary supplementing dicarboxylic acid. Therefore the present results reporting that supplementation of dicarboxylic acid might enhance the stabilization of ruminal fermentation and increase the milk yield of lactating cows.

본 연구는 항생제 대체제로서 Dicarboxylic acid가 in vitro 반추위 발효성상, 착유우의 유량 및 유성분에 미치는 영향을 조사하기 위한 목적으로 실시하였다. 반추위 발효성상을 조사하기 위하여 batch culture 방법을 이용하였으며, Dicarboxylic acid의 급여가 착유우의 유량 및 유성분에 미치는 영향을 조사하기 위하여 평균체중 $649{\pm}19 kg$으로 일일 산유량 $38{\pm}3.95kg$, 유지방 $3.22{\pm}0.23%$, 산 차 $2.5{\pm}1.43$차인 홀스타인 착유우 10두를 산 차 및 산유량 등을 고려하여 시험사료에 따른 2개 군(대조구 5두, Dicarboxylic acid 급여구 5두)으로 나누어 실험을 실시하였다. Dicarboxylic acid는 사료급여량의 2%를 첨가하여 1일 2회 오전과 오후 착유 시 급여하였다. Dicarboxylic acid는 반추위내 pH에 긍정적인 영향을 주어 건물소화율이 유의적으로 증가하였다. 따라서 Dicarboxylic acid는 반추위 발효환경에 긍정적인 영향을 미치는 것으로 판단된다. 건물소화율은 Dicarboxylic acid를 단독 급여할 때 가장 높았다. 또한 Dicarboxylic acid를 추가 급여하면 반추위 내 총 VFA 함량이 증가하는 경향을 나타내었다. Acetic acid 농도는 Dicarboxylic acid 단독 처리구에서 높게 생성되는 경향을 나타내었다. 착유우의 유량은 Dicarboxylic acid를 급여한 처리구에서 대조구 대비 약 14%의 유량이 증가하였다. Dicarboxylic acid는 유성분 및 MUN에는 영향을 미치지 않는 것으로 판단된다. 따라서 항생제 대체제로서 Dicarboxylic acid 첨가는 반추위 내 발효환경을 안정화하여 건물소화율을 향상시키고 착유우의 유량을 높일 수 있을 것으로 판단된다.

Keywords

References

  1. A. O. A. C. 1990. Official Methods of Analysis (15th ed.) Association of Official Agricultural Chemists Washington, D. C.
  2. Callaway, T. R. and S. A. Martin. 1996. Effect of organic acid and monensin treatment on in vitro mixed ruminal microorganisms fermentation of cracked corn. J. Anim. Sci. 74: 1982-1989. https://doi.org/10.2527/1996.7481982x
  3. Chaney, A. L. and E. P. Marbach. 1962. Modified reagent for determination of urea and ammonia. Clinical Chemistry. 8: 130-132.
  4. Gaines, W. L. and F. A. Davidson. 1923. Relation between percentage fat content and yield of milk. Correction of milk yield for fat content. Illinois Agr. Expt. Sta. Bull. No. 245.
  5. Goering, H. K. and P. J. Van Soest. 1970. Forage fiber analysis (apparatus, reagents, procedure and application). Agric. Handbook 379. ARS. Washington D. C.
  6. Higginbotham, G. E., C. A. Collar., M. S. Aseltine, and D. L. Bath. 1994. Effect of yeast culture and aspergillus oryzae extract on milk yield in a commercial dairy herd. J. Dairy Sci. 77: 343-348. https://doi.org/10.3168/jds.S0022-0302(94)76960-5
  7. James, E. N. 1997. Bovine acidosis: Implication on laminitis. J. Dairy Sci. 80: 1005-1028. https://doi.org/10.3168/jds.S0022-0302(97)76026-0
  8. Lehninger, A. L. 1975. Biochemistry (2nd Ed.), Worth Publishers, New York.
  9. Looper, M. L., S. R. Stokes., D. N. Waldner, and E. R. Jordan. 2001. Managing milk composition: evaluating herd potential. New Mexico State University Extension Service. Guide D-104. pp. 1-4.
  10. Martin, C., E. Devillard, and B. Michalet-Doreau. 1999. Influence of sampling site on concentrations and carbohydrate degrading enzyme activity of protozoa and bacteria in the rumen. J. Anim. Sci. 77: 979-987. https://doi.org/10.2527/1999.774979x
  11. Martin, S. A. and M. N. Streeter. 1995. Effect of malate on in vitro mixed ruminal microorganisms fermentation. J. Anim. Sci. 73: 2141-2145. https://doi.org/10.2527/1995.7372141x
  12. McDougall, E. J. 1948. Studies of ruminant saliva. 1. The composition of output of sheep's saliva. Biochem. J. 43: 99-109. https://doi.org/10.1042/bj0430099
  13. Moon, S. J., Y. S. Joo., G. C. Jang., Y. D. Yoon., B. K. Lee., Y. H. Park, and C. H. Son. 2000. Interpretation of protein-energy balance of feeding by milk urea nitrogen and protein contents in lactating Holstein cow. Kor. J. Anim. Sci and Tech. 42: 499-510.
  14. Moore, G. A. and S. A. Martin. 1991. Effect of growth conditions on the Streptococcus bovis phosphopenol pyruvate glucose phosphotransferase system. J. Anim. Sci. 69: 4967-4973. https://doi.org/10.2527/1991.69124967x
  15. Newbold, C. J., R. J. Wallace, and F. M. McIntosh. 1996. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr. 76: 249-261. https://doi.org/10.1079/BJN19960029
  16. Nisbet, D. J. and S. A. Martin. 1993. Effect of furmarate, L-malate and Aspergillus oryzae fermentation extract on D-lactate utilization by the rumen Selenomonas ruminantium. Curr. Microbiol. 26: 133-136. https://doi.org/10.1007/BF01577366
  17. Nisbet, D. J. and S. A. Martin. 1994. Factors affecting L-lactate utilization by Selenomonas ruminantium. J. Anim. Sci. 72: 1355-1361. https://doi.org/10.2527/1994.7251355x
  18. Owens, F. N., D. S. Secrist., W. J. Hill, and D. R. Gill. 1998. Acidosis in cattle : a review. J. Anim. Sci. 76: 275-286. https://doi.org/10.2527/1998.761275x
  19. Russell, J. B. and S. A. Martin. 1984. Effects of various methane inhibitions on the fermentation of amino acids by mixed rumen microorganisms in vitro. J. Anim. Sci. 59: 1329-1338. https://doi.org/10.2527/jas1984.5951329x
  20. Russell, J. B. and H. J. Strobel. 1989. Effect of ionophore on ruminal fermentation. Appl. Environ. Microbiol. 55: 1-6.
  21. Sanson, D. W. and O. T. Stallcup. 1984. Growth response and serum constituents of Holstein bulls fed malic acid. Nutr. Rep. Int. 30: 1261-1267.
  22. SAS. 2002. SAS User's Guide. Statistics, Version 8.0 Edition. SAS Institute. Inc. Cary, NC.
  23. Stone, W. C. 1999. The effect of subclinical rumen acidosis on milk component. pp 40-46. Cornell nutrition conference. Cornell University, Ithaca, NY.
  24. Stroble, H. J. and J. B. Russell. 1986. Effect of pH and energy spilling on bacterial protein synthesis by carbohydrate-limited cultures of mixed rumen bacteria. J. Dairy Sci. 69: 2941-2947. https://doi.org/10.3168/jds.S0022-0302(86)80750-0
  25. Tilly, J. M. A and R. A. Terry. 1963. A two stage technique for in vitro digestion of forage crop. J. Brit. Grass. Soc. 18: 104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  26. Waghorn, G. C. and K. J. Stafford. 1993. Gas production and nitrogen digestion by rumen microbes from deer and sheep. New Zealand J. Agri. Res. 36: 493-497. https://doi.org/10.1080/00288233.1993.10417750
  27. Wanapat, M. and S. Khampa. 2007. Manipulation of rumen fermentation with organic acids supplementation in ruminants raised in the tropics. Pakis. J. Nutr. 6: 20-27.