참고문헌
- Bimbo, K. and Dunn, J. M. (2002), "Four-valued logic", Notre Dame Journal of Formal Logic, 42, pp. 171-192.
- Blok, W. J. and Pigozzi, D. (1989), Algebraizable Logic, Memoirs of the American Methematical Society, vol. 386. American Methematical Society, Providence.
- Ciabattoni, A., Esteva, F., and Godo, L. (2002), "T-norm-based logics with n-contraction", Special Issue on SOFSEM2002 of Neural Network World, 12, pp. 453-460.
- Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic, 45, pp. 673-704.
- Cintula, P., Esteva, F., Gispert, J., Godo, L., Montagna, F., and Noguera, C. (2009), "Distinguished algebraic semantics for t-norm-based Fuzzy Logics", Annals of Pure and Applied Logic, 160, pp. 53-81. https://doi.org/10.1016/j.apal.2009.01.012
- Cintula, P. and Noguera, C. (2011), A general framework for mathematical fuzzy logic, in P. Cintula, P. Hajek, and C. Noguera (eds.) Handbook of Mathematical Fuzzy Logic, vol 1, London: College publications, pp. 103-207.
- Diaconescu, D. and Georgescu, G. (2007), "On the forcing semantics for monoidal t-norm based logic", Journal of Universal Computer Science, 13, pp. 1550-1572.
- Dunn, J. M. (1976) "A Kripke-style semantics for R-Mingle using a binary accessibility relation", Studia Logica, 35, pp. 163-172. https://doi.org/10.1007/BF02120878
- Dunn, J. M. (2000), "Partiality and its Dual", Studia Logica, 66, pp. 5-40. https://doi.org/10.1023/A:1026740726955
- Gabbay, D. and Metcalfe, G. (2007), "Fuzzy Logics based on [0, 1)-continuous uninorms", Archive for Mathematical Logic, 46, pp. 425-449. https://doi.org/10.1007/s00153-007-0047-1
- Kripke, S. (1963), "Semantic analysis of modal logic I: normal modal propositional calculi", Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 9, pp. 67-96.
- Kripke, S. (1965a), "Semantic analysis of intuitionistic logic I", in J. Crossley and M. Dummett (eds.) Formal systems and Recursive Functions, Amsterdam: North-Holland Publ Co, pp. 92-129.
- Kripke, S. (1965b), "Semantic analysis of modal logic II", in J. Addison, L. Henkin, and A. Tarski (eds.) The theory of models, Amsterdam: North-Holland Publ Co, pp. 206-220.
- Metcalfe, G. and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic, 72, pp. 834-864. https://doi.org/10.2178/jsl/1191333844
- Metcalfe, G., Olivetti, N., and Gabbay, D. (2009) Proof Theory for Fuzzy Logics, Springer.
- Montagna, F., Noguera, C., and Horcik, R. (2006), "On weakly cancellative fuzzy logics", Journal of Logic and Computation, 16, pp. 423-450. https://doi.org/10.1093/logcom/exl002
-
Montagna, F. and Ono, H. (2002), "Kripke semantics, undecidability and standard completeness for Esteva and Godo's Logic
$MTL{\forall}$ ", Studia Logica, 71, pp. 227-245. https://doi.org/10.1023/A:1016500922708 - Montagna, F. and Sacchetti, L. (2003), "Kripke-style semantics for many-valued logics", Mathematical Logic Quaterly, 49, pp. 629-641. https://doi.org/10.1002/malq.200310068
- Montagna, F. and Sacchetti, L. (2004), "Corrigendum to "Kripke-style semantics for many-valued logics", Mathematical Logic Quaterly, 50, pp. 104-107. https://doi.org/10.1002/malq.200310081
- Novak, V. (1990), "On the syntactico-semantical completeness of first-order fuzzy logic I, II", Kybernetika, 26, pp. 47-66.
- Thomason, R. H. (1969), "A semantic study of constructive falsity", Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 15, pp. 247-257. https://doi.org/10.1002/malq.19690151602
- Tsinakis, C. and Blount, K. (2003), "The structure of residuated lattices", International Journal of Algebra and Computation, 13, pp. 437-461. https://doi.org/10.1142/S0218196703001511
- Urquhart, A. (1986), "Many-valued logic". in D. Gabbay and F. Guenthner (eds.) Handbook of Philosophical Logic, vol. 3, Dordrecht: Reidel Publ Co, pp. 71-116.
- Wang, S., Wang, B., and Pei, D. (2005), "A fuzzy logic for an ordinal sum t-norm", Fuzzy Sets and Systems, 149, pp. 297-307. https://doi.org/10.1016/j.fss.2004.01.005
- Wang, S., Wang, B., and Ren. F. (2005), "NML, a schematic extension of F. Esteva and L. Godo's logic MTL", Fuzzy Sets and Systems, 149, pp. 285-295. https://doi.org/10.1016/j.fss.2003.12.005
- Yager, R. R., and Rybalov, A., (1996), "Uninorm aggregation operators", Fuzzy Sets and Systems, 80, 111-120. https://doi.org/10.1016/0165-0114(95)00133-6
- Yang, E. (2009), "(Star-based) four-valued Kripke-style Semantics for some neighbors of E, R, T", Logique et Analyse, 207, pp. 255-280.
- Yang, E. (2012a), "(Star-based) three-valued Kripke-style semantics for pseudo- and weak-Boolean logics", Logic Journal of the IGPL, 20, pp. 187-206. https://doi.org/10.1093/jigpal/jzr030
- Yang, E. (2012b), "Kripke-style semantics for UL", Korean Journal of Logic, 15 (1), pp. 1-15.
- Yang, E. (2014a), "Algebraic Kripke-Style Semantics for Relevance Logics", Journal of Philosophical Logic, 43, pp. 803-826. https://doi.org/10.1007/s10992-013-9290-6
- Yang, E. (2014b), "Algebraic Kripke-style semantics for weakening-free fuzzy logics", Korean Journal of Logic, 17 (1), pp. 181-195.
- Yang, E. (2015), "Basic substructural core fuzzy logics and their extensions: Mianorm-based logics", Fuzzy Sets and Systems, http://dx.doi.org/10.1016/j.fss.2015.09.007. Published online: 25 September 2015.