DOI QR코드

DOI QR Code

Nafamostat mesilate promotes endothelium-dependent vasorelaxation via the Akt-eNOS dependent pathway

  • Choi, Sujeong (Department of physiology & BK21Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University) ;
  • Kwon, Hyon-Jo (Department of Neurosurgery, Regional Cerebrovascular Center, Chungnam National University Hospital) ;
  • Song, Hee-Jung (Department of Neurology, Chungnam National University Hospital) ;
  • Choi, Si Wan (Division of Cardiology, Internal Medicine, School of Medicine, Chungnam National University, Chungnam National University Hospital) ;
  • Nagar, Harsha (Department of physiology & BK21Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University) ;
  • Piao, Shuyu (Department of physiology & BK21Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University) ;
  • Jung, Saet-byel (Department of Endocrinology, Chungnam National University Hospital) ;
  • Jeon, Byeong Hwa (Department of physiology & BK21Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University) ;
  • Kim, Dong Woon (Department of Anatomy & BK21Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University) ;
  • Kim, Cuk-Seong (Department of physiology & BK21Plus CNU Integrative Biomedical Education Initiative, School of Medicine, Chungnam National University)
  • Received : 2016.06.27
  • Accepted : 2016.07.11
  • Published : 2016.09.01

Abstract

Nafamostat mesilate (NM), a synthetic serine protease inhibitor, has anticoagulant and anti-inflammatory properties. The intracellular mediator and external anti-inflammatory external signal in the vascular wall have been reported to protect endothelial cells, in part due to nitric oxide (NO) production. This study was designed to examine whether NM exhibit endothelium dependent vascular relaxation through Akt/endothelial nitric oxide synthase (eNOS) activation and generation of NO. NM enhanced Akt/eNOS phosphorylation and NO production in a dose- and time-dependent manner in human umbilical vein endothelial cells (HUVECs) and aorta tissues obtained from rats treated with various concentrations of NM. NM concomitantly decreased arginase activity, which could increase the available arginine substrate for NO production. Moreover, we investigated whether NM increased NO bioavailability and decreased aortic relaxation response to an eNOS inhibitor in the aorta. These results suggest that NM increases NO generation via the Akt/eNOS signaling pathway, leading to endothelium-dependent vascular relaxation. Therefore, the vasorelaxing action of NM may contribute to the regulation of cardiovascular function.

Keywords

References

  1. Ross R, Glomset JA. The pathogenesis of atherosclerosis (first of two parts). N Engl J Med. 1976;295:369-377. https://doi.org/10.1056/NEJM197608122950707
  2. Rees DD, Palmer RM, Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989;86:3375-3378. https://doi.org/10.1073/pnas.86.9.3375
  3. Vallance P, Collier J, Moncada S. Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet. 1989;2:997-1000.
  4. Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci U S A. 1996;93:13176-13181. https://doi.org/10.1073/pnas.93.23.13176
  5. Watson T, Goon PK, Lip GY. Endothelial progenitor cells, endothelial dysfunction, inflammation, and oxidative stress in hypertension. Antioxid Redox Signal. 2008;10:1079-1088. https://doi.org/10.1089/ars.2007.1998
  6. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995;377:239-242. https://doi.org/10.1038/377239a0
  7. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Aktdependent phosphorylation. Nature. 1999;399:601-605. https://doi.org/10.1038/21224
  8. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333:664-666. https://doi.org/10.1038/333664a0
  9. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524-526. https://doi.org/10.1038/327524a0
  10. Bobadilla NA, Gamba G, Tapia E, García-Torres R, Bolio A, Lopez-Zetina P, Herrera-Acosta J. Role of NO in cyclosporin nephrotoxicity: effects of chronic NO inhibition and NO synthases gene expression. Am J Physiol. 1998;274:F791-798.
  11. Panza JA, Casino PR, Kilcoyne CM, Quyyumi AA. Role of endothelium-derived nitric oxide in the abnormal endotheliumdependent vascular relaxation of patients with essential hypertension. Circulation. 1993;87:1468-1474. https://doi.org/10.1161/01.CIR.87.5.1468
  12. Akizawa T, Koshikawa S, Ota K, Kazama M, Mimura N, Hirasawa Y. Nafamostat mesilate: a regional anticoagulant for hemodialysis in patients at high risk for bleeding. Nephron. 1993;64:376-381. https://doi.org/10.1159/000187357
  13. Iwaki M, Ino Y, Motoyoshi A, Ozeki M, Sato T, Kurumi M, Aoyama T. Pharmacological studies of FUT-175, nafamostat mesilate. V. effects on the pancreatic enzymes and experimental acute pancreatitis in rats. Jpn J Pharmacol. 1986;41:155-162. https://doi.org/10.1254/jjp.41.155
  14. Kang MW, Song HJ, Kang SK, Kim Y, Jung SB, Jee S, Moon JY, Suh KS, Lee SD, Jeon BH, Kim CS. Nafamostat mesilate inhibits TNF-${\alpha}$-induced vascular endothelial cell dysfunction by inhibiting reactive oxygen species production. Korean J Physiol Pharmacol. 2015;19:229-234. https://doi.org/10.4196/kjpp.2015.19.3.229
  15. Kwon SK, Ahn M, Song HJ, Kang SK, Jung SB, Harsha N, Jee S, Moon JY, Suh KS, Lee SD, Jeon BH, Kim DW, Kim CS. Nafamostat mesilate attenuates transient focal ischemia/reperfusion-induced brain injury via the inhibition of endoplasmic reticulum stress. Brain Res . 2015;1627:12-20. https://doi.org/10.1016/j.brainres.2015.09.013
  16. Gonzalez W, Fontaine V, Pueyo ME, Laquay N, Messika-Zeitoun D, Philippe M, Arnal JF, Jacob MP, Michel JB. Molecular plasticity of vascular wall during N(G)-nitro-L-arginine methyl esterinduced hypertension: modulation of proinflammatory signals. Hypertension. 2000;36:103-109. https://doi.org/10.1161/01.HYP.36.1.103
  17. Tedgui A, Mallat Z. Anti-inflammatory mechanisms in the vascular wall. Circ Res. 2001;88:877-887. https://doi.org/10.1161/hh0901.090440
  18. Szabó G, Veres G, Radovits T, Haider H, Krieger N, Bährle S, Miesel-Gröschel C, Niklisch S, Karck M, van de Locht A. Effects of novel synthetic serine protease inhibitors on postoperative blood loss, coagulation parameters, and vascular relaxation after cardiac surgery. J Thorac Cardiovasc Surg. 2010;139:181-188; discussion 188. https://doi.org/10.1016/j.jtcvs.2009.09.019
  19. Chao J, Stallone JN, Liang YM, Chen LM, Wang DZ, Chao L. Kallistatin is a potent new vasodilator. J Clin Invest. 1997;100:11-17. https://doi.org/10.1172/JCI119502
  20. García-Cardeña G, Fan R, Shah V, Sorrentino R, Cirino G, Papapetropoulos A, Sessa WC. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature. 1998;392:821-824. https://doi.org/10.1038/33934
  21. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999;399:597-601. https://doi.org/10.1038/21218
  22. Mori M, Gotoh T. Regulation of nitric oxide production by arginine metabolic enzymes. Biochem Biophys Res Commun. 2000;275:715-719. https://doi.org/10.1006/bbrc.2000.3169
  23. Berkowitz DE, White R, Li D, Minhas KM, Cernetich A, Kim S, Burke S, Shoukas AA, Nyhan D, Champion HC, Hare JM. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation. 2003;108:2000-2006. https://doi.org/10.1161/01.CIR.0000092948.04444.C7
  24. Ryoo S, Lemmon CA, Soucy KG, Gupta G, White AR, Nyhan D, Shoukas A, Romer LH, Berkowitz DE. Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling. Circ Res. 2006;99:951-960. https://doi.org/10.1161/01.RES.0000247034.24662.b4

Cited by

  1. Nebivolol alleviates aortic remodeling through eNOS upregulation and inhibition of oxidative stress in l-NAME-induced hypertensive rats vol.39, pp.7, 2016, https://doi.org/10.1080/10641963.2017.1306539
  2. Endothelium Independent Effect of Pelargonidin on Vasoconstriction in Rat Aorta vol.26, pp.4, 2016, https://doi.org/10.4062/biomolther.2017.197
  3. Far-Infrared-Emitting Sericite Board Upregulates Endothelial Nitric Oxide Synthase Activity through Increasing Biosynthesis of Tetrahydrobiopterin in Endothelial Cells vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/1813282
  4. The Molecular Aspect of Antitumor Effects of Protease Inhibitor Nafamostat Mesylate and Its Role in Potential Clinical Applications vol.9, pp.None, 2016, https://doi.org/10.3389/fonc.2019.00852
  5. Anti-Hypertensive Activity of Novel Peptides Identified from Olive Flounder ( Paralichthys olivaceus ) Surimi vol.9, pp.5, 2016, https://doi.org/10.3390/foods9050647
  6. Lung transcriptome analysis for the identification of genes involved in the hypoxic adaptation of plateau pika (Ochotona curzoniae) vol.41, pp.None, 2022, https://doi.org/10.1016/j.cbd.2021.100943