DOI QR코드

DOI QR Code

DAMGO modulates two-pore domain K+ channels in the substantia gelatinosa neurons of rat spinal cord

  • Cho, Pyung Sun (Department of Biomedical Science, Graduate School of Biomedical Science, Engineering, Hanyang University) ;
  • Lee, Han Kyu (Department of Biomedical Science, Graduate School of Biomedical Science, Engineering, Hanyang University) ;
  • Lee, Sang Hoon (Department of Biomedical Science, Graduate School of Biomedical Science, Engineering, Hanyang University) ;
  • Im, Jay Zoon (Department of Biomedical Science, Graduate School of Biomedical Science, Engineering, Hanyang University) ;
  • Jung, Sung Jun (Department of Biomedical Science, Graduate School of Biomedical Science, Engineering, Hanyang University)
  • Received : 2016.05.31
  • Accepted : 2016.07.07
  • Published : 2016.09.01

Abstract

The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying $K^+$ current. In this study, we examined whether a ${\mu}$-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain $K^+$ channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the $K^+$ equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying $K^+$ channel) related acid-sensitive $K^+$ channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced $K^+$ current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain $K^+$ channel (TASK1 and 3) in addition to inwardly rectifying $K^+$ channel.

Keywords

References

  1. Kumazawa T, Perl ER. Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn functional organization. J Comp Neurol. 1978;177:417-434. https://doi.org/10.1002/cne.901770305
  2. Yoshimura M, Jessell TM. Membrane properties of rat substantia gelatinosa neurons in vitro. J Neurophysiol. 1989;62:109-118. https://doi.org/10.1152/jn.1989.62.1.109
  3. Merchenthaler I, Maderdrut JL, Altschuler RA, Petrusz P. Immunocytochemical localization of proenkephalin-derived peptides in the central nervous system of the rat. Neuroscience. 1986;17:325-348. https://doi.org/10.1016/0306-4522(86)90250-2
  4. Besse D, Lombard MC, Zajac JM, Roques BP, Besson JM. Pre- and postsynaptic distribution of mu, delta and kappa opioid receptors in the superficial layers of the cervical dorsal horn of the rat spinal cord. Brain Res. 1990;521:15-22. https://doi.org/10.1016/0006-8993(90)91519-M
  5. Gouardères C, Beaudet A, Zajac JM, Cros J, Quirion R. High resolution radioautographic localization of [125I]FK-33-824-labelled mu opioid receptors in the spinal cord of normal and deafferented rats. Neuroscience. 1991;43:197-209. https://doi.org/10.1016/0306-4522(91)90427-P
  6. Faull RL, Villiger JW. Opiate receptors in the human spinal cord: a detailed anatomical study comparing the autoradiographic localization of [3H]diprenorphine binding sites with the laminar pattern of substance P, myelin and nissl staining. Neuroscience. 1987;20:395-407. https://doi.org/10.1016/0306-4522(87)90100-X
  7. Yoshimura M, North RA. Substantia gelatinosa neurones hyperpolarized in vitro by enkephalin. Nature. 1983;305:529-530. https://doi.org/10.1038/305529a0
  8. Grudt TJ, Williams JT. mu-Opioid agonists inhibit spinal trigeminal substantia gelatinosa neurons in guinea pig and rat. J Neurosci. 1994;14:1646-1654. https://doi.org/10.1523/JNEUROSCI.14-03-01646.1994
  9. Schneider SP, Eckert WA 3rd, Light AR. Opioid-activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons. J Neurophysiol. 1998;80:2954-2962. https://doi.org/10.1152/jn.1998.80.6.2954
  10. Rusin KI, Moises HC. mu-Opioid receptor activation reduces multiple components of high-threshold calcium current in rat sensory neurons. J Neurosci. 1995;15:4315-4327. https://doi.org/10.1523/JNEUROSCI.15-06-04315.1995
  11. Taddese A, Nah SY, McCleskey EW. Selective opioid inhibition of small nociceptive neurons. Science. 1995;270:1366-1369. https://doi.org/10.1126/science.270.5240.1366
  12. Seol GH, Kim J, Cho SH, Kim WK, Kim JW, Kim SJ. The inhibitory effect of opioid on the hyperpolarization-activated cation currents in rat substantia gelatinosa neurons. Korean J Physiol Pharmacol. 2001;5:373-380.
  13. Enyedi P, Czirjak G. Molecular background of leak $K^{+}$ currents: twopore domain potassium channels. Physiol Rev. 2010;90:559-605. https://doi.org/10.1152/physrev.00029.2009
  14. Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N. Potassium leak channels and the KCNK family of two-P-domain subunits. Nature Rev Neurosci . 2001;2:175-184.
  15. Blankenship ML, Coyle DE, Baccei ML. Transcriptional expression of voltage-gated $Na^+$ and voltage-independent $K^{+}$ channels in the developing rat superficial dorsal horn. Neuroscience. 2013;231:305-314. https://doi.org/10.1016/j.neuroscience.2012.11.053
  16. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M. TASK, a human background $K^{+}$ channel to sense external pH variations near physiological pH. EMBO J. 1997;16:5464-5471. https://doi.org/10.1093/emboj/16.17.5464
  17. Ribeiro-da-Silva A, Pioro EP, Cuello AC. Substance P- and enkephalin-like immunoreactivities are colocalized in certain neurons of the substantia gelatinosa of the rat spinal cord: an ultrastructural double-labeling study. J Neurosci. 1991;11:1068-1080. https://doi.org/10.1523/JNEUROSCI.11-04-01068.1991
  18. Arvidsson U, Dado RJ, Riedl M, Lee JH, Law PY, Loh HH, Elde R, Wessendorf MW. delta-Opioid receptor immunoreactivity: distribution in brainstem and spinal cord, and relationship to biogenic amines and enkephalin. J Neurosci. 1995;15:1215-1235. https://doi.org/10.1523/JNEUROSCI.15-02-01215.1995
  19. Arvidsson U, Riedl M, Chakrabarti S, Lee JH, Nakano AH, Dado RJ, Loh HH, Law PY, Wessendorf MW, Elde R. Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J Neurosci . 1995;15:3328-3341. https://doi.org/10.1523/JNEUROSCI.15-05-03328.1995
  20. Kemp T, Spike RC, Watt C, Todd AJ. The mu-opioid receptor (MOR1) is mainly restricted to neurons that do not contain GABA or glycine in the superficial dorsal horn of the rat spinal cord. Neuroscience. 1996;75:1231-1238. https://doi.org/10.1016/0306-4522(96)00333-8
  21. Kerchner GA, Zhuo M. Presynaptic suppression of dorsal horn inhibitory transmission by mu-opioid receptors. J Neurophysiol. 2002;88:520-522. https://doi.org/10.1152/jn.2002.88.1.520
  22. Glaum SR, Miller RJ, Hammond DL. Inhibitory actions of delta 1-, delta 2-, and mu-opioid receptor agonists on excitatory transmission in lamina II neurons of adult rat spinal cord. J Neurosci. 1994;14:4965-4971. https://doi.org/10.1523/JNEUROSCI.14-08-04965.1994
  23. Talley EM, Lei Q, Sirois JE, Bayliss DA. TASK-1, a two-pore domain $K^{+}$ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron. 2000;25:399-410. https://doi.org/10.1016/S0896-6273(00)80903-4
  24. Berg AP, Talley EM, Manger JP, Bayliss DA. Motoneurons express heteromeric TWIK-related acid-sensitive $K^{+}$ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J Neurosci. 2004;24:6693-6702. https://doi.org/10.1523/JNEUROSCI.1408-04.2004
  25. Kim Y, Bang H, Kim D. TASK-3, a new member of the tandem pore $K^{+}$ channel family. J Biol Chem. 2000;275:9340-9347. https://doi.org/10.1074/jbc.275.13.9340
  26. Morton MJ, O'Connell AD, Sivaprasadarao A, Hunter M. Determinants of pH sensing in the two-pore domain $K^{+}$ channels TASK-1 and -2. Pflugers Arch. 2003;445:577-583. https://doi.org/10.1007/s00424-002-0901-2
  27. Devilliers M, Busserolles J, Lolignier S, Deval E, Pereira V, Alloui A, Christin M, Mazet B, Delmas P, Noel J, Lazdunski M, Eschalier A. Activation of TREK-1 by morphine results in analgesia without adverse side effects. Nat Commun. 2013;4:2941. https://doi.org/10.1038/ncomms3941
  28. Clarke CE, Veale EL, Green PJ, Meadows HJ, Mathie A. Selective block of the human 2-P domain potassium channel, TASK-3, and the native leak potassium current, IKSO, by zinc. J Physiol. 2004;560:51-62. https://doi.org/10.1113/jphysiol.2004.070292
  29. Kang D, Han J, Talley EM, Bayliss DA, Kim D. Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells. J Physiol. 2004;554:64-77. https://doi.org/10.1113/jphysiol.2003.054387
  30. Torborg CL, Berg AP, Jeffries BW, Bayliss DA, McBain CJ. TASKlike conductances are present within hippocampal CA1 stratum oriens interneuron subpopulations. J Neurosci. 2006;26:7362-7367. https://doi.org/10.1523/JNEUROSCI.1257-06.2006

Cited by

  1. Nociceptor Signalling through ion Channel Regulation via GPCRs vol.20, pp.10, 2016, https://doi.org/10.3390/ijms20102488