DOI QR코드

DOI QR Code

N-acetyl-L-cysteine and cysteine increase intracellular calcium concentration in human neutrophils

  • Hasan, Md. Ashraful (Department of Pharmacology, College of Medicine, Hallym University) ;
  • Ahn, Won-Gyun (Department of Pharmacology, College of Medicine, Hallym University) ;
  • Song, Dong-Keun (Department of Pharmacology, College of Medicine, Hallym University)
  • Received : 2016.01.15
  • Accepted : 2016.04.28
  • Published : 2016.09.01

Abstract

N-acetyl-L-cysteine (NAC) and cysteine have been implicated in a number of human neutrophils' functional responses. However, though $Ca^{2+}$ signaling is one of the key signalings contributing to the functional responses of human neutrophils, effects of NAC and cysteine on intracellular calcium concentration ($[Ca^{2+}]_i$) in human neutrophils have not been investigated yet. Thus, this study was carried out with an objective to investigate the effects of NAC and cysteine on $[Ca^{2+}]_i$ in human neutrophils. We observed that NAC ($1{\mu}M{\sim}1mM$) and cysteine ($10{\mu}M{\sim}1mM$) increased $[Ca^{2+}]_i$ in human neutrophils in a concentration-dependent manner. In NAC pre-supplmented buffer, an additive effect on N-formyl-methionine-leucine-phenylalanine (fMLP)-induced increase in $[Ca^{2+}]_i$ in human neutrophils was observed. In $Ca^{2+}$-free buffer, NAC- and cysteine-induced $[Ca^{2+}]_i$ increase in human neutrophils completely disappeared, suggesting that NAC- and cysteine-mediated increase in $[Ca^{2+}]_i$ in human neutrophils occur through $Ca^{2+}$ influx. NAC- and cysteine-induced $[Ca^{2+}]_i$ increase was effectively inhibited by calcium channel inhibitors SKF96365 ($10{\mu}m$) and ruthenium red ($20{\mu}m$). In $Na^+$-free HEPES, both NAC and cysteine induced a marked increase in $[Ca^{2+}]_i$ in human neutrophils, arguing against the possibility that $Na^+$-dependent intracellular uptake of NAC and cysteine is necessary for their $[Ca^{2+}]_i$ increasing activity. Our results show that NAC and cysteine induce $[Ca^{2+}]_i$ increase through $Ca^{2+}$ influx in human neutrophils via SKF96365- and ruthenium red-dependent way.

Keywords

References

  1. Murray RK, Granner DK, Mayes PA, Rodweil VW. Biosynthesis of nutritionally nonessential amino acids. Harper's Biochemistry. 22nd ed. USA: Appleton & Lange; 1991. p.267-269.
  2. Kelly GS. Clinical applications of N-acetylcysteine. Altern Med Rev. 1998;3:114-127.
  3. De Flora S, Balansky RM, Bennicelli C, Camoirano A, D'agostini F, Izzotti A, Cesarone CF. Mechanisms of anticarcinogenesis: The example of N-acetylcysteine. In: Ioannides C, Lewis DFV, editors. Drugs Diet and Disease. Mechanistic Approaches to Cancer. Hemel Hempstead, UK: Ellis Horwood; 1995. p.151-203.
  4. Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med. 1999;27:916-921. https://doi.org/10.1016/S0891-5849(99)00177-X
  5. Aitio ML. N-acetylcysteine -- passe-partout or much ado about nothing? Br J Clin Pharmacol. 2006;61:5-15. https://doi.org/10.1111/j.1365-2125.2005.02523.x
  6. De Flora S, Izzotti A, D'agostini F, Balansky RM. Mechanisms of N-acetylcysteine in the prevention of DNA damage and cancer, with special reference to smoking-related end-points. Carcinogenesis. 2001;22:999-1013. https://doi.org/10.1093/carcin/22.7.999
  7. Kobayashi SD, Voyich JM, Burlak C, Deleo FR. Neutrophils in the innate immune response. Arch Immunol Ther Exp (Warsz). 2005;53:505-517.
  8. Paulsen O, Forsgren A. Effects of N-acetylcysteine on human polymorphonuclear leukocytes. APMIS. 1989;97:115-119. https://doi.org/10.1111/j.1699-0463.1989.tb00764.x
  9. Jensen T, Kharazmi A, Schiotz PO, Nielsen H, Stenvang Pedersen S, Stafanger G, Koch C, Hoiby N. Effect of oral N-acetylcysteine administration on human blood neutrophil and monocyte function. APMIS. 1988;96:62-67. https://doi.org/10.1111/j.1699-0463.1988.tb05269.x
  10. Bernard GR, Lucht WD, Niedermeyer ME, Snapper JR, Ogletree ML, Brigham KL. Effect of N-acetylcysteine on the pulmonary response to endotoxin in the awake sheep and upon in vitro granulocyte function. J Clin Invest. 1984;73:1772-1784. https://doi.org/10.1172/JCI111386
  11. Kharazmi A, Nielsen H, Schiotz PO. N-acetylcysteine inhibits human neutrophil and monocyte chemotaxis and oxidative metabolism. Int J Immunopharmacol. 1988;10:39-46.
  12. Ohman L, Dahlgren C, Follin P, Lew D, Stendahl O. N-aceacetylcysteine enhances receptor-mediated phagocytosis by human neutrophils. Agents Actions. 1992;36:271-277.
  13. Roberts RL, Aroda VR, Ank BJ. N-acetylcysteine enhances antibody-dependent cellular cytotoxicity in neutrophils and mononuclear cells from healthy adults and human immunodeficiency virus-infected patients. J Infect Dis. 1995;172:1492-1502. https://doi.org/10.1093/infdis/172.6.1492
  14. Krump E, Pouliot M, Naccache PH, Borgeat P. Leukotriene synthesis in calcium-depleted human neutrophils: arachidonic acid release correlates with calcium influx. Biochem J. 1995;310:681-688. https://doi.org/10.1042/bj3100681
  15. Nüsse O, Serrander L, Foyouzi-Youssefi R, Monod A, Lew DP, Krause KH. Store-operated $Ca^{2+}$ inf lux and stimulation of exocytosis in HL-60 granulocytes. J Biol Chem. 1997;272:28360-28367. https://doi.org/10.1074/jbc.272.45.28360
  16. Nüsse O, Serrander L, Lew DP, Krause KH. $Ca^{2+}$-induced exocytosis in individual human neutrophils: high- and low-affinity granule populations and submaximal responses. EMBO J. 1998;17:1279-1288. https://doi.org/10.1093/emboj/17.5.1279
  17. Thelen M, Dewald B, Baggiolini M. Neutrophil signal transduction and activation of the respiratory burst. Physiol Rev. 1993;73:797-821. https://doi.org/10.1152/physrev.1993.73.4.797
  18. Granfeldt D, Samuelsson M, Karlsson A. Capacitative $Ca^{2+}$ influx and activation of the neutrophil respiratory burst. Different regulation of plasma membrane- and granule-localized NADPHoxidase. J Leukoc Biol. 2002;71:611-617.
  19. van Kooyk Y, Weder P, Heije K, de Waal Malefijt R, Figdor CG. Role of intracellular $Ca^{2+}$ levels in the regulation of CD11a/CD18 mediated cell adhesion. Cell Adhes Commun. 1993;1:21-32. https://doi.org/10.3109/15419069309095679
  20. Lawson MA, Maxfield FR. $Ca^{2+}$- and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature. 1995;377:75-79. https://doi.org/10.1038/377075a0
  21. Tintinger G, Steel HC, Anderson R. Taming the neutrophil: calcium clearance and influx mechanisms as novel targets for pharmacological control. Clin Exp Immunol. 2005;141:191-200. https://doi.org/10.1111/j.1365-2249.2005.02800.x
  22. Futosi K, Fodor S, Mocsai A. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol. 2013;17:638-650. https://doi.org/10.1016/j.intimp.2013.06.034
  23. Merritt JE, Armstrong WP, Benham CD, Hallam TJ, Jacob R, Jaxa-Chamiec A, Leigh BK, McCarthy SA, Moores KE, Rink TJ. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J. 1990;271:515-522. https://doi.org/10.1042/bj2710515
  24. Zhu X, Jiang M, Birnbaumer L. Receptor-activated $Ca^{2+}$ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative $Ca^{2+}$ entry. J Biol Chem. 1998;273:133-142. https://doi.org/10.1074/jbc.273.1.133
  25. Shlykov SG, Yang M, Alcorn JL, Sanborn BM. Capacitative cation entry in human myometrial cells and augmentation by hTrpC3 overexpression. Biol Reprod. 2003;69:647-655. https://doi.org/10.1095/biolreprod.103.015396
  26. Clapham DE. SnapShot: mammalian TRP channels. Cell. 2007;129:220.
  27. Rychkov G, Barritt GJ. TRPC1 $Ca^{2+}$-permeable channels in animal cells. Handb Exp Pharmacol. 2007;(179):23-52.
  28. Brechard S, Melchior C, Plançon S, Schenten V, Tschirhart EJ. Storeoperated $Ca^{2+}$ channels formed by TRPC1, TRPC6 and Orai1 and non-store-operated channels formed by TRPC3 are involved in the regulation of NADPH oxidase in HL-60 granulocytes. Cell Calcium. 2008;44:492-506. https://doi.org/10.1016/j.ceca.2008.03.002
  29. Singh A, Hildebrand ME, Garcia E, Snutch TP. The transient receptor potential channel antagonist SKF96365 is a potent blocker of low-voltage-activated T-type calcium channels. Br J Pharmacol. 2010;160:1464-1475. https://doi.org/10.1111/j.1476-5381.2010.00786.x
  30. Colton CK, Zhu MX. 2-Aminoethoxydiphenyl borate as a common activator of TRPV1, TRPV2, and TRPV3 channels. Handb Exp Pharmacol. 2007;(179):173-187.
  31. Gregory RB, Rychkov G, Barritt GJ. Evidence that 2-aminoethyl diphenylborate is a novel inhibitor of store-operated $Ca^{2+}$ channels in liver cells, and acts through a mechanism which does not involve inositol trisphosphate receptors. Biochem J. 2001;354:285-290. https://doi.org/10.1042/bj3540285
  32. Prakriya M, Lewis RS. Potentiation and inhibition of $Ca^{2+}$ releaseactivated $Ca^{2+}$ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol. 2001;536:3-19. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00003.x
  33. Bootman MD, Collins TJ, Mackenzie L, Roderick HL, Berridge MJ, Peppiatt CM. 2-aminoethoxydiphenyl borate (2-APB) is a reliable blocker of store-operated $Ca^{2+}$ entry but an inconsistent inhibitor of InsP3-induced $Ca^{2+}$ release. FASEB J. 2002;16:1145-1150. https://doi.org/10.1096/fj.02-0037rev
  34. Xu SZ, Zeng F, Boulay G, Grimm C, Harteneck C, Beech DJ. Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol. 2005;145:405-414.
  35. Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgårdh-Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ. Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res. 2006;98:557-563. https://doi.org/10.1161/01.RES.0000204724.29685.db
  36. Bréchard S, Melchior C, Plançon S, Schenten V, Tschirhart EJ. Storeoperated $Ca^{2+}$ channels formed by TRPC1, TRPC6 and Orai1 and non-store-operated channels formed by TRPC3 are involved in the regulation of NADPH oxidase in HL-60 granulocytes. Cell Calcium. 2008;44:492-506. https://doi.org/10.1016/j.ceca.2008.03.002
  37. Sandmann S, Unger T. L- and T-type calcium channel blockade - the efficacy of the calcium channel antagonist mibefradil. J Clin Basic Cardiol. 1999;2:187-201.
  38. Hill K, Benham CD, Mcnulty S, Randall AD. Flufenamic acid is a pH-dependent antagonist of TRPM2 channels. Neuropharmacology. 2004;47:450-460. https://doi.org/10.1016/j.neuropharm.2004.04.014
  39. Hill K, Mcnulty S, Randall AD. Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn Schmiedebergs Arch Pharmacol. 2004;370:227-237. https://doi.org/10.1007/s00210-004-0981-y
  40. Reid K, Guo TZ, Davies MF, Maze M. Nifedipine, an L-type calcium channel blocker, restores the hypnotic response in rats made tolerant to the alpha-2 adrenergic agonist dexmedetomidine. J Pharmacol Exp Ther. 1997;283:993-999.
  41. Seres T, Knickelbein RG, Warshaw JB, Johnston RB Jr. The phagocytosis-associated respiratory burst in human monocytes is associated with increased uptake of glutathione. J Immunol. 2000;165:3333-3340. https://doi.org/10.4049/jimmunol.165.6.3333
  42. Young JD, Wolowyk MW, Jones SE, Ellory JC. Sodium-dependent cysteine transport in human red blood cells. Nature. 1979;279:800-802. https://doi.org/10.1038/279800a0
  43. Shanker G, Allen JW, Mutkus LA, Aschner M. The uptake of cysteine in cultured primary astrocytes and neurons. Brain Res. 2001;902:156-163. https://doi.org/10.1016/S0006-8993(01)02342-3
  44. Elferink JG, de Koster BM. N-acetylcysteine causes a transient stimulation of neutrophil migration. Immunopharmacology. 1998;38:229-236. https://doi.org/10.1016/S0162-3109(97)00056-8
  45. Bei L, Hu T, Qian ZM, Shen X. Extracellular $Ca^{2+}$ regulates the respiratory burst of human neutrophils. Biochim Biophys Acta. 1998;1404:475-483. https://doi.org/10.1016/S0167-4889(98)00081-0
  46. Lindemann O, Strodthoff C, Horstmann M, Nielsen N, Jung F, Schimmelpfennig S ,Heitzmann M, Schwab A. TRPC1 regulates fMLP-stimulated migration and chemotaxis of neutrophil granulocytes. Biochim Biophys Acta. 2015;1853:2122-2130. https://doi.org/10.1016/j.bbamcr.2014.12.037
  47. Niessen HW, Kuijpers TW, Roos D, Verhoeven AJ. Release of azurophilic granule contents in fMLP-stimulated neutrophils requires two activation signals, one of which is a rise in cytosolic free $Ca^{2+}$. Cell Signal. 1991;3:625-633. https://doi.org/10.1016/0898-6568(91)90039-W
  48. Sadowska AM, Manuel-y-keenoy B, Vertongen T, Schippers G, Radomska-Lesniewska D, Heytens E, De Backer WA. Effect of N-acetylcysteine on neutrophil activation markers in healthy volunteers: in vivo and in vitro study. Pharmacol Res. 2006;53:216-225. https://doi.org/10.1016/j.phrs.2005.11.003
  49. Heiner I, Eisfeld J, Lückhoff A. Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium. 2003;33:533-540. https://doi.org/10.1016/S0143-4160(03)00058-7
  50. Knickelbein RG, Seres T, Lam G, Johnston RB Jr, Warshaw JB. Characterization of multiple cysteine and cystine transporters in rat alveolar type II cells. Am J Physiol. 1997;273:L1147-1155.

Cited by

  1. Mechanical features of endothelium regulate cell adhesive molecule-induced calcium response in neutrophils vol.3, pp.1, 2016, https://doi.org/10.1063/1.5045115