Data Envelopment Analysis of the Management Efficiency of National Shipping Enterprises in South Korea
-Chiefly on the Corporate Entertainment and Advertisement Cost-
Park, Hyun-Jun · Kim, Hyuna · Lim, Young-Tae

Abstract

This study uses Data Envelopment Analysis (DEA) to investigate the management efficiency of Korean shipping companies based on business administration costs such as corporate entertainment, advertisement, and labor costs.

We analyze shipping enterprises listed on the Korean stock market for the period of 2010-2014. Corporate entertainment, advertisement and labor costs are used as input variables and sales and net income are used as output variables. We use technical efficiency, pure technical efficiency, scale efficiency and returns to scale to propose a plan to improve the efficiency of decision-making units (DMUs).

The results of the efficiency analysis show that six of the DMUs in the technical efficiency of CCR model and eight of the DMUs in the pure technical efficiency of BCC model are in efficient state. In terms of return to scale, six of the DMUs (24% of all DMUs) show increasing returns to scale, while 13 DMUs (52% of all DMUs) show decreasing returns to scale.

Because multiple efficient states for DMUs exist in the technical efficiency analysis, we conduct a super efficiency analysis. The results show that the efficient state of the two most efficient DMUs are 1,314 and 1,243, respectively. This implies that these DMUs could maintain their current levels of the efficiency if they increase the amount spent on advertisements, corporate entertainment and labor costs by 31.4% and 24.3%, respectively.

We conclude this study by providing the efficiency states of each DMU and target for improving the inefficiencies in each case.

Key words: Data Envelopment Analysis Model, Shipping enterprise, Enterprise expense, Advertisement expense, Efficiency analysis
I. 서론

금융위기 이후 해운업은 침체된 해운시장이 지속되면서 경영에 큰 어려움을 겪고 있다. 선박배
형화와 선규 선박인도 등의 요인으로 해운서비스 수요보다 해운서비스 공급량이 많아 수급 불균형
이 나타났기 때문이다. 해운기업은 해운시장의 악화를 극복하기 위해 내부적으로는 갈등운행, 외부
적으로는 협력 체제를 변경하는 등 다양한 노력을 하고 있다. 장기화된 해운시장의 침체기구 극복하
기 위해서는 해운기업이 기존에 저출하고 있던 비용 구조조정을 통해 효율적으로 저출해야 할 것
이다.

해운기업은 인건비, 재무에 대한 이자, 괴고·선
전비용, 점대비용, 선박구매비용 등 다양한 항목을
비용으로 저출하고 있으며 영업활동을 통해 매출
과 순이익을 발생시키고 있다. 국내 해운기업의
경우 점대비 저출이 괴고·선전비 저출에 비해 상
대적으로 많다. 해운기업은 대수의 대중과의 거래
보다 소수의 기업과 거래하는 특성을 가지고 있기
때문이다. 특정한 합계가 있는 저출하는 점대비를
항목비용으로 보는 부정적인 견해가 있는 반면
에 점대비는 기업의 운영과정에서 피할 수 없는
비용 저출로 보는 의견도 있다. 기업에서는 매출
을 증가시키기 위해 점대비와 괴고·선전비의 저
출을 현재와 같이 또는 현재보다 더 많은 규모의
비용 저출이 필요하다고 생각할 수 있다. 하지만
부채비용이 높을수록 경영자는 더 많은 점대비 저
출을 할 수 있으며(정상복과 김재호, 2010), 부실
가능성이 높은 기업인수록 점대비 저출을 늘릴 수
있다(김성환과 김나, 2011). 구조조정을 해야 하
는 시기라면 점대비와 괴고·선전비와 같은 관계
관리비용은 결국 기업의 순이익에 부정적인 영향
을 줄 수밖에 없다. 따라서 점대비와 괴고·선전
비의 효율적인 저출은 기업의 성과에 긍정적인 영
향을 주는 중요한 요인이다.

기존연구의 경우 연구의 범위를 자산, 자본 등
의 매수 포괄적인 범위로 설정하고 있으며 선박
량, 선박 수와 같은 선박과 관련된 고정자산에 집
중되어 있고, 제1부 투입요인보다는 포괄적인 요인
에 대한 연구가 주로 이루어지고 있어 점대비, 괴고·선전비, 인건비 등 제2부 투입관리 측면에 대
한 연구는 미흡한 설정이다. 또한 해운기업의 경
영요소 중 인건비, 괴고·선전비, 점대비 항목은
선박 수, 직원 수 등에 비해 사내 공감대 형성, 효
과적인 투자정책 수립의 방식으로 대내외 경제 환
경 변화에 단기적으로 효율성을 개선할 수 있는
항목임에도 불구하고 이에 대한 연구가 완전히
전행되지 않은 상태이다.

본 논문은 국내 해운기업의 경영성과인 매출액
과 당기순이익에 기업의 투입요인인 괴고·선전비
과 점대비, 인건비를 모두 고려하여 효율성을 분
석하는 것을 목적으로 하고 있다. 이를 위해 서론
에 이어서 II장에서 선행연구를 검토하고 III장에
서 Data Envelopment Analysis와 효율성 연구방
법론과 실증분석을 위한 변수를 소개한다. IV장에
서 실증분석 결과를 제시하고 V장에서 실증분석
결과를 요약하고 연구의 한계점과 연구방향을 제
시하며 결론을 냈다.

II. 선행연구 고찰

국내에서 해운기업의 경영효율성은 DEA-Window
기법을 바탕으로 효율성을 동정적으로 분석하고
년까지 총 10년간 국내 50개 해운기업의 자료를
바탕으로 DEA-Window 기법을 이용하여 효율성을
측정하였다. 투입변수로는 고정자산, 직원 수, 총
자본을 산출변수로 매출액, 영업이익, 당기순이익
을 적용하였다. 대부분 외향화물류업체의 효율성이
높았고 내향화물류를 취급하는 업체의 효율성이 낮은 것으로 나타났다.
황경연과 구종순(2011)의 연구에서는 DEA모형을 이용하여 2005년부터 2009년까지 5년간의 국내외 컨테이너선사의 효율성을 각 연도별로 평가하였다. 투입변수로는 총장, 자본, 선박량(TEU)을 산출변수로는 매출액과 영업이익, 당기순이익을 설정하였다. 분석결과 국내 컨테이너선사의 효율성이 국외 컨테이너선사보다 높지만 규모면에서 소규모 선사가 많아 규모 확대가 필요한 것으로 나타났다.

해운기업 효율성을 정태적으로 평가한 연구로 Bumsock Kang et al.(2012)의 연구에서 BSC와 DEA를 이용하여 국내외 해운선사기업의 효율성을 다단계로 평가하였다. 투입변수로는 자산과 자본, 선박수, 선박량, 직원 수로 설정하였고 산출변수로 매출액과 영업이익, 당기순이익, 소비자만족도로 설정하였다. 경영적 지표와 함께 경제적 지표를 이용하여 다단계 효율성 측정을 시도하였다.

Phoits M, Panayides et al.(2011)의 연구에서는 2008년에 유럽, 홍콩, 싱가포르, 타이완, 한국 등
필크심과 랏크심, 켄테너션을 운영하는 26개 글로벌 기업의 효율성을 DEA와 Stochastic Frontier Analysis(SFA)를 이용하여 측정하였다. 투입변수로는 이익, 주식의 장부가치(Book value of equity), 총자본, 자본지출, 직원 수, EBIT(Earnings Before Interests and Tax), EBITDA(Earnings Before Interests, Tax, Depreciation and Amortization) 매출에 대비 EBITDA를 설정하였고 산출변수로는 매출액과 주식의 시장가치(Market value of equity)를 적용하였다. 본석결과 켄테너션 기업이 가장 효율성이 높았으며 랏크심, 필크심 기업 순으로 나타났다.

경영효율성 중 점대비와 광고·선전비에 대한 효율성 평가에 관한 연구는 모수원(2010)의 연구에서 국내 손수업 중 해운기업 10개사를 대상으로 2001년부터 2007년간의 효율성을 DEA와 Mahnquist, tobit분석법을 이용하여 측정하였다. 측정변수로는 산출변수로 매출액으로 하고 투입변수로 인건비와 광고·선전비, 인건비와 점대비 2가지로 구분하여 각각의 효율성을 측정하였다. 또한 모수원(2013)의 다른 연구에서는 DEA모형과 패널공적분 분석을 이용하였다. 인건비와 광고·선전비, 인건비와 점대비

<table>
<thead>
<tr>
<th>구분</th>
<th>연구자</th>
<th>분석대상</th>
<th>분석법</th>
<th>투입변수</th>
<th>산출변수</th>
</tr>
</thead>
<tbody>
<tr>
<td>경영 효율성</td>
<td>이형석, 김기석(2006)</td>
<td>국내 50개 해운기업</td>
<td>DEA-Window</td>
<td>고정자산, 직원수, 총자본</td>
<td>매출액, 영업이익, 당기순이익</td>
</tr>
<tr>
<td></td>
<td>황경열, 구종순(2011)</td>
<td>국내외 해운기업</td>
<td>DEA</td>
<td>총자산, 자본, 선박량(TEU)</td>
<td>매출액, 영업이익, 당기순이익</td>
</tr>
<tr>
<td></td>
<td>박희석, 강효원(2011)</td>
<td>국내외 20개 해운기업</td>
<td>DEA-Window</td>
<td>총자산, 켄테너션 선박 수, 선박량</td>
<td>매출액, 영업이익, 켄테너션 화물 취급실적</td>
</tr>
<tr>
<td></td>
<td>박광석(2012)</td>
<td>국내외 18개 해운선사</td>
<td>DEA, Malmquist</td>
<td>자본, 자본, 선박량</td>
<td>매출액</td>
</tr>
<tr>
<td></td>
<td>고대경(2013)</td>
<td>물류·해운기업 20개사</td>
<td>DEA, Malmquist</td>
<td>인건비, 유동자산</td>
<td>매출액, 순이익</td>
</tr>
<tr>
<td></td>
<td>고대경 외(2014)</td>
<td>물류·해운기업 20개사</td>
<td>DEA</td>
<td>인건비, 비유동자산</td>
<td>매출액, 순이익</td>
</tr>
<tr>
<td></td>
<td>김종기, 강단연(2008)</td>
<td>국내 20개 해운기업</td>
<td>DEA, 초효율성분석</td>
<td>자본, 자본, 직원수</td>
<td>매출액, 영업이익, 당기순이익</td>
</tr>
<tr>
<td></td>
<td>Bum sock Kang et al.(2012)</td>
<td>국내외 해운선사</td>
<td>BSC, DEA</td>
<td>자본, 자본, 선박수, 선박량, 직원수</td>
<td>매출액, 영업이익, 당기순이익, 소비자만족도</td>
</tr>
<tr>
<td></td>
<td>Wen-Cheng Lim et al.(2010)</td>
<td>대만 14개 해운기업</td>
<td>DEA-SBM</td>
<td>고정자산, 부채비율</td>
<td>고정자산회전율, 유동비율</td>
</tr>
<tr>
<td></td>
<td>Phoits M, Panyiicles et al.(2011)</td>
<td>유럽 등 26개 글로벌 기업</td>
<td>DEA SFA</td>
<td>이익, 주식의 장부가치, 총자본, 자본지출, 직원수, EBIT, EBITDA</td>
<td>매출액, 주식의 시장가치</td>
</tr>
<tr>
<td>광고비/점대비</td>
<td>모수원(2010)</td>
<td>국내 해운기업 10개사</td>
<td>DEA, Malmquist, tobit</td>
<td>인건비, 광고·선전비/인건비, 점대비</td>
<td>매출액</td>
</tr>
<tr>
<td></td>
<td>모수원(2013)</td>
<td>중화학공업, 청공업 등 14개 산업</td>
<td>DEA, 패널공적분</td>
<td>인건비, 광고·선전비/인건비, 점대비</td>
<td>매출액, 순이익</td>
</tr>
</tbody>
</table>
대비를 투입변수로 설정하고 매출액과 순이익을 각각의 산출변수로 설정하여 중화학공업과 경공업 등 총 14개 업종의 효율성을 측정하였다.
기존 연구는 의사결정단위의 점대비와 광고·선전비를 투입변수로 하여 효율성을 측정한 것에 의의가 있으나 측정된 효율성 값이 1인 효율적 의사결정단위의 효율성을 파악에는 한계가 있었다. 또한 광고·선전비와 점대비를 각각의 투입변수로 설정하여 구분하여 분석하였다.
본 연구에서는 두 가지 측면에서 기존의 연구와 차별성이 있다. 첫째, 기존 연구는 산출변수를 단일변수로 설정하거나 광고·선전비와 점대비를 개별적으로 분석하여 광고·선전비, 점대비, 매출액과 순이익을 동시에 고려한 연구는 찾아보기 쉽지 않은 상태이다.
본 연구에서는 투입변수인 광고·선전비와 점대비, 인건비가 복합적으로 산출변수인 매출액과 당기순이익에 작용한다는 점을 고려하여 효율성을 분석하였다. 둘째, Super-efficiency 분석을 통해 효율성 값이 1 이상인 효율적 의사결정단위의 효율성 차이를 파악하였다. 셋째, 벤치마킹 대상 정보를 제공하고 비효율 DMU의 비효율 개선방안을 제시하여 비효율성 개선을 위한 비용절감규모를 파악할 수 있게 하였다.

III. 연구설계

1. 연구방법론

1) DEA모형

본 연구는 Chames et al. (1978)이 제시한 자료 포화분석법(Data Envelopment Analysis: DEA)을 이용하여 국내 해운기업의 효율성을 분석한다. DEA모형은 투입과 산출로 이루어진 의사결정단위(Decision Making Unit: DMU)의 상대효율성을 산출계획법(linear programming)을 통해 비교하여 논의하는 방법이다(이정동과 오동현, 2010).

DEA 모형의 효율성은 효율적인 프론티어와 거리비교를 통한 각 DMU의 상대적 효율성을 의미한다. DMU의 투입과 산출자료를 이용하여 효율적 프론티어를 도출하고 효율적 프론티어로부터 벗어진 거리에 따라 비효율성을 측정한다. 이 과정에서 도출된 효율성은 기술효율성(Technical Efficiency: TE)과 순수기술효율성(Pure Technical Efficiency: PTE) 및 규모효율성(Scale Efficiency: SE)으로 구성된다.

CCR모형은 산출지향모형과 투입지향모형으로 구분할 수 있으며 본 논문에서는 투입지향모형을 이용한다.

\[\text{Min } \theta_k \]

subject to

\[\sum_{j=1}^{n} \lambda_j x_{ij} + s^i - \theta_k x_{ij} = 0, \quad i = 1, \ldots, m \quad (\text{식 } 1) \]

\[\sum_{i} \lambda_i y_{rj} - s^r = 0, \quad r = 1, \ldots, s \]

\[s^-, s^+, \lambda_j \geq 0, \quad j = 1, \ldots, n \]

\[\lambda_j \]는 j번째 의사결정단위(DMU)에 부과되는 가중치이며 \(s^-, s^+ \)은 투입과 산출에 부등식의 여
유변수 (slack variable)를 의미한다.

2) 초효율성 (Super-Efficiency) 모형

일반적인 DEA 모형은 효율성 값이 1인 DMU가 2개 이상 발생하는 경우에 효율 DMU 간 차이를 구분할 수 없고, 잔여 (Slack) 값을 고려하여 분석하지 못한다는 한계가 있다 (이정동과 오동현, 2010). 이로 인한 문제점을 보완하기 위해 SBM (Slack Base Model)을 이용하기도 한다. 본 연구에서는 DEA 모형의 확장 모형인 초효율성 모형을 통해 DEA 분석을 보완하고자 한다.

초효율성 DEA 모형은 (식 2)와 같이 도출할 수 있다.

\[
\theta = \min \theta - \epsilon (\sum_{m=1}^{M} s_m + \sum_{n=1}^{N} s_n)
\]

subject to

\[
\theta x_{km} = \sum_{j=1}^{i} \lambda_j x_{jm} + s_m
\]

\[
y_{kn} = \sum_{j=1}^{i} \lambda_j y_{jn} - s_n \quad \text{(식 2)}
\]

\[
\lambda_j \geq 0
\]

\[
m = 1, \ldots, m
\]

\[
n = 1, \ldots, n
\]

\[
j = 1, \ldots, j, j \neq k
\]

Anderson and Peterson (1993)이 제안한 초효율 성 모형 (Super-Efficiency DEA)은 CCR모형 또는 BCC모형에서 도출된 효율적인 DMU가 현재의 효율성을 유지하면서 투입물량을 증가시킬 수 있는 최 적값을 파악하는 모형이다.

2. 변수의 정의 및 자료의 수집

본 연구는 기존 연구의 한계점을 보완하기 위하여 인건비와 광고·선전비, 점대비를 투입변수로, 당기순이익과 매출액을 산출변수로 설정하였다. 분석의 대상은 국내중소형 상장되어 금융감독원 전 자공시스템에서 기업의 회계보고서 자료 구득이 가능한 해운기업을 대상으로 하였다. 현재 상장된 국내 해운기업 중 광고·선전비, 점대비 항목을 응시한 기업은 2007년까지 10개사였으나 2008년 이후 5개사로 감소하였다.

표 2. 투입-산출변수 설정

<table>
<thead>
<tr>
<th>변수</th>
<th>변수 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>투 입 (Input)</td>
<td>인건비</td>
</tr>
<tr>
<td>광고·선전비</td>
<td></td>
</tr>
<tr>
<td>점대비</td>
<td></td>
</tr>
<tr>
<td>산 출 (Output)</td>
<td>당기순이익</td>
</tr>
<tr>
<td>매출액</td>
<td></td>
</tr>
</tbody>
</table>

\[DMU \text{의 수 } \geq Max[\text{산출물의 수} \times \text{투입물의 수} + 3(\text{산출물의 수} + \text{투입물의 수})] \]

DEA모형에서 분석대상의 수가 적어도 투입변수와 산출변수의 골 이상 (Bousofiane et al., 1991)이거나 투입요소와 산출요소의 합에 3배 이상 (Banker et al., 1984)보다 크야 한다.

효율성 분석 DMU의 수가 효율성 분석의 최소치를 만족할 수 없는 경우 각 DMU를 개별의사결정 단위로 효율성 분석단위로 가정하여 효율성을
표 2. 투입-산출변수

<table>
<thead>
<tr>
<th>DMU</th>
<th>인건비</th>
<th>광고전비</th>
<th>판매비</th>
<th>매출액</th>
<th>당기순이익</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMU1</td>
<td>18,222,447,784</td>
<td>129,243,775</td>
<td>1,545,645,565</td>
<td>851,675,264,311</td>
<td>54,964,663,816</td>
</tr>
<tr>
<td>DMU2</td>
<td>13,671,942,890</td>
<td>472,044,003</td>
<td>802,306,429</td>
<td>1,245,126,159,011</td>
<td>61,881,850,434</td>
</tr>
<tr>
<td>DMU3</td>
<td>23,344,312,515</td>
<td>423,655,745</td>
<td>1,197,220,771</td>
<td>2,481,507,939,343</td>
<td>186,568,171,710</td>
</tr>
<tr>
<td>DMU4</td>
<td>9,699,380,574</td>
<td>19,000,000</td>
<td>641,079,061</td>
<td>787,341,690,072</td>
<td>64,981,866,666</td>
</tr>
<tr>
<td>DMU5</td>
<td>5,777,817,779</td>
<td>36,912,616</td>
<td>279,138,533</td>
<td>137,526,097,588</td>
<td>21,030,045,520</td>
</tr>
<tr>
<td>DMU6</td>
<td>17,636,303,195</td>
<td>122,316,275</td>
<td>1,341,505,570</td>
<td>810,584,768,422</td>
<td>44,167,905,366</td>
</tr>
<tr>
<td>DMU7</td>
<td>19,399,393,178</td>
<td>589,663,857</td>
<td>1,288,046,742</td>
<td>1,186,342,378,813</td>
<td>25,387,014,252</td>
</tr>
<tr>
<td>DMU8</td>
<td>22,004,713,568</td>
<td>21,641,805</td>
<td>1,057,352,315</td>
<td>2,598,280,552,428</td>
<td>255,829,264,469</td>
</tr>
<tr>
<td>DMU9</td>
<td>6,479,302,599</td>
<td>16,800,000</td>
<td>461,210,568</td>
<td>795,785,174,465</td>
<td>56,998,186,833</td>
</tr>
<tr>
<td>DMU10</td>
<td>6,041,024,833</td>
<td>28,002,409</td>
<td>286,524,047</td>
<td>118,679,752,112</td>
<td>26,377,626,569</td>
</tr>
<tr>
<td>DMU11</td>
<td>16,284,347,772</td>
<td>139,446,746</td>
<td>1,400,873,998</td>
<td>774,754,985,533</td>
<td>74,355,549,067</td>
</tr>
<tr>
<td>DMU12</td>
<td>21,846,730,453</td>
<td>609,150,070</td>
<td>1,344,624,143</td>
<td>1,127,942,642,838</td>
<td>34,766,099,176</td>
</tr>
<tr>
<td>DMU13</td>
<td>23,804,968,280</td>
<td>214,263,743</td>
<td>1,018,579,051</td>
<td>2,874,752,612,063</td>
<td>204,126,778,925</td>
</tr>
<tr>
<td>DMU14</td>
<td>3,928,796,812</td>
<td>24,610,318</td>
<td>385,244,021</td>
<td>546,741,796,380</td>
<td>33,079,577,858</td>
</tr>
<tr>
<td>DMU15</td>
<td>5,590,441,605</td>
<td>22,161,618</td>
<td>355,258,562</td>
<td>112,243,908,936</td>
<td>1,285,437,7048</td>
</tr>
<tr>
<td>DMU16</td>
<td>14,438,188,469</td>
<td>130,956,251</td>
<td>1,327,429,780</td>
<td>745,083,575,081</td>
<td>40,612,797,248</td>
</tr>
<tr>
<td>DMU17</td>
<td>15,079,260,254</td>
<td>572,456,817</td>
<td>1,289,917,761</td>
<td>1,002,297,884,604</td>
<td>4,801,722,474</td>
</tr>
<tr>
<td>DMU18</td>
<td>21,322,729,989</td>
<td>179,877,663</td>
<td>956,595,665</td>
<td>2,553,335,784,041</td>
<td>113,998,005,380</td>
</tr>
<tr>
<td>DMU19</td>
<td>3,155,463,742</td>
<td>11,712,000</td>
<td>277,109,931</td>
<td>456,423,414,889</td>
<td>24,861,070,468</td>
</tr>
<tr>
<td>DMU20</td>
<td>5,186,434,529</td>
<td>10,155,455</td>
<td>365,410,662</td>
<td>98,396,511,177</td>
<td>24,134,260,183</td>
</tr>
<tr>
<td>DMU21</td>
<td>15,653,357,726</td>
<td>134,867,172</td>
<td>1,197,245,971</td>
<td>723,682,848,124</td>
<td>42,341,615,960</td>
</tr>
<tr>
<td>DMU22</td>
<td>17,350,946,733</td>
<td>497,229,628</td>
<td>1,300,425,802</td>
<td>907,639,346,861</td>
<td>51,204,114,971</td>
</tr>
<tr>
<td>DMU23</td>
<td>20,620,983,928</td>
<td>161,258,920</td>
<td>879,985,007</td>
<td>2,209,387,173,921</td>
<td>172,267,463,305</td>
</tr>
<tr>
<td>DMU24</td>
<td>1,933,591,193</td>
<td>12,795,000</td>
<td>211,046,088</td>
<td>232,480,538,185</td>
<td>23,233,770,015</td>
</tr>
<tr>
<td>DMU25</td>
<td>4,929,702,580</td>
<td>11,779,864</td>
<td>351,776,616</td>
<td>108,393,813,190</td>
<td>10,274,253,536</td>
</tr>
</tbody>
</table>

분석할 수 있다(박만희, 2008; Jung Hee Han 2013).
본 연구의 DMU는 기업의 연도별 자료를 독립
된 의사결정단위(DMU)로 설정하여 25개(5개 기업
× 5개년)의 자료를 수집하였다.

IV. 분석결과

1. 효율성 분석

DEA 분석을 통해 도출된 각 DMU의 효율성은
CCR모형의 기술효율성(TE) 및 BCC모형의 순수기술
효율성(PTE), 규모효율성(SE), 규모의 수익(RTS)으
로 나누어볼 수 있으며 결과는 다음과 같다.
표 4. 효율성 분석

<table>
<thead>
<tr>
<th>DMU</th>
<th>TE</th>
<th>PTE</th>
<th>SE</th>
<th>RTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMU1</td>
<td>0.339</td>
<td>0.359</td>
<td>0.945</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU2</td>
<td>0.705</td>
<td>0.723</td>
<td>0.974</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU3</td>
<td>0.859</td>
<td>0.880</td>
<td>0.976</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU4</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>CRS</td>
</tr>
<tr>
<td>DMU5</td>
<td>0.394</td>
<td>0.756</td>
<td>0.522</td>
<td>IRS</td>
</tr>
<tr>
<td>DMU6</td>
<td>0.332</td>
<td>0.350</td>
<td>0.948</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU7</td>
<td>0.458</td>
<td>0.484</td>
<td>0.948</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU8</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>CRS</td>
</tr>
<tr>
<td>DMU9</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>CRS</td>
</tr>
<tr>
<td>DMU10</td>
<td>0.552</td>
<td>0.776</td>
<td>0.711</td>
<td>IRS</td>
</tr>
<tr>
<td>DMU11</td>
<td>0.393</td>
<td>0.400</td>
<td>0.986</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU12</td>
<td>0.394</td>
<td>0.407</td>
<td>0.971</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU13</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>CRS</td>
</tr>
<tr>
<td>DMU14</td>
<td>0.988</td>
<td>1.000</td>
<td>0.988</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU15</td>
<td>0.255</td>
<td>0.594</td>
<td>0.429</td>
<td>IRS</td>
</tr>
<tr>
<td>DMU16</td>
<td>0.357</td>
<td>0.389</td>
<td>0.917</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU17</td>
<td>0.463</td>
<td>0.518</td>
<td>0.894</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU18</td>
<td>0.995</td>
<td>1.000</td>
<td>0.995</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU19</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>CRS</td>
</tr>
<tr>
<td>DMU20</td>
<td>0.695</td>
<td>1.000</td>
<td>0.695</td>
<td>IRS</td>
</tr>
<tr>
<td>DMU21</td>
<td>0.334</td>
<td>0.347</td>
<td>0.961</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU22</td>
<td>0.378</td>
<td>0.402</td>
<td>0.941</td>
<td>DRS</td>
</tr>
<tr>
<td>DMU23</td>
<td>0.979</td>
<td>0.980</td>
<td>0.999</td>
<td>IRS</td>
</tr>
<tr>
<td>DMU24</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>CRS</td>
</tr>
<tr>
<td>DMU25</td>
<td>0.257</td>
<td>0.922</td>
<td>0.278</td>
<td>IRS</td>
</tr>
</tbody>
</table>

내 국내 해운기업의 효율성 분석결과 CCR 모형에서
효율적인 DMU는 DMU4, DMU8, DMU9, DMU13, DMU19, DMU24로 총 6개의 DMU가 효율적인 상태
인 것으로 분석되었다. 또한 BCC 모형에서는
DMU4, DMU8, DMU9, DMU13, DMU14, DMU18, DMU19, DMU24로 총 8개의 DMU가 효율적인 상태
로 분석되었다. CCR 모형에서 비효율 상황으로
으로 분석된 DMU 중 DMU14, DMU18은 BCC 모
형에서 효율성을 갖는 것으로 나타나 비효율의 원
인의 규모에서 비롯된 것으로 판단된다.

규모의 수익 추세에서는 DMU4, DMU8, DMU9, DMU13, DMU19, DMU24가 규모수익 불변(Con
stant Return to Scale) 형태인 것으로 분석되었다. 또한
DMU1, DMU2, DMU3, DMU6, DMU7, DMU11, DMU12, DMU14, DMU16, DMU17, DMU21, DMU22
의 경우 규모수익 감소(Decreasing Return to Scale)
으로 분석되어 상대적 기업 규모를 현저히 줄이자
켜는 방안을 고려해야 하는 것으로 분석되었다.
반면에 DMU5, DMU10, DMU15, DMU20, DMU23의 경우에는 규모수익증가(Increasing Return to Scale) 상태로 효율적인 상태는 아니나 인수합병 등을 통해 기업규모를 키워산출물인 매출액과 당기순이익을 증가시키는 방안을 고려할 수 있는 것으로 나타났다. 가장 많이 백차마경의 대상은 DMU19로 총 13회의 백차마경 대상이 되었으며 DMU13이 10회, DMU9가 6회, DMU24가 5회 순으로 나타났다.

2. 초효율성 분석

효율성이 1,000의 값을 갖고 있는 다수의 DMU가 존재하게 되지만 효율적인 DMU간의 효율성을 차이를 파악할 수 없다는 한계점이 있다. 따라서 초효율성(Super-efficiency) DEA분석을 통해 기존 효율적 DMU간의 차이와 효율수준을 파악하고자 한다.

기존 DEA모형에서 비효율성태로 분석된 DMU는 기준의 값을 크게 유지하며 효율적인 상태로 분석된 DMU의 값이 초효율성 분석으로 1보다 크게 측정되어 효율성 순위와 효율수준을 파악할 수 있다.

먼저 기술효율성에 대한 초효율성을 분석한 결과 DMU8이 1.314로 가장 높은 효율수준을 나타내고 있으며 DMU9가 1.243으로 효율성이 높은 것으로 분석되었다. 초효율성 분석결과에서 도출된 DMU8의 1.314, DMU9의 1.243은 투입물인 인건비, 광고, 전산비, 접대비를 현재보다 각각 31.4%, 24.3% 추가로 투입하여도 효율적인 상태를 유지할 수 있다는 것을 의미한다.

다음으로 순수기술효율성에 대한 초효율성 분석 결과로 DMU24가 가장 높은 효율성을 보이는 것으로 나타났고 DMU21이 가장 비효율적인 상태임 것으로 분석되었다.

3. 국내 해운기업의 효율성 개선 방안

국내 해운기업의 광고·전산비, 접대비, 인건비 효율성을 개선하기 위한 투입을 조정 방안은 다음과 같다.

국내 해운기업은 대부분 효율성을 향상시키기 위해서 기존보다 높은 비율로 광고·전산비, 접대비,
표 7. 효율성 개선 방안

<table>
<thead>
<tr>
<th>DMU</th>
<th>인건비</th>
<th>광고·선전비</th>
<th>점대비</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMU1</td>
<td>-66.1%</td>
<td>-76.5%</td>
<td>-66.1%</td>
</tr>
<tr>
<td>DMU2</td>
<td>-29.5%</td>
<td>-85.4%</td>
<td>-29.5%</td>
</tr>
<tr>
<td>DMU3</td>
<td>-14.1%</td>
<td>-60.2%</td>
<td>-14.1%</td>
</tr>
<tr>
<td>DMU4</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>DMU5</td>
<td>-65.9%</td>
<td>-60.6%</td>
<td>-60.6%</td>
</tr>
<tr>
<td>DMU6</td>
<td>-66.8%</td>
<td>-75.6%</td>
<td>-66.8%</td>
</tr>
<tr>
<td>DMU7</td>
<td>-54.1%</td>
<td>-90.6%</td>
<td>-54.1%</td>
</tr>
<tr>
<td>DMU8</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>DMU9</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>DMU10</td>
<td>-56.8%</td>
<td>-44.8%</td>
<td>-44.8%</td>
</tr>
<tr>
<td>DMU11</td>
<td>-43.8%</td>
<td>-57.9%</td>
<td>-43.5%</td>
</tr>
<tr>
<td>DMU12</td>
<td>-60.5%</td>
<td>-90.4%</td>
<td>-60.5%</td>
</tr>
<tr>
<td>DMU13</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>DMU14</td>
<td>-1.2%</td>
<td>-34.3%</td>
<td>-8.2%</td>
</tr>
<tr>
<td>DMU15</td>
<td>-75.5%</td>
<td>-74.5%</td>
<td>-74.5%</td>
</tr>
<tr>
<td>DMU16</td>
<td>-64.3%</td>
<td>-85.4%</td>
<td>-65.9%</td>
</tr>
<tr>
<td>DMU17</td>
<td>-53.7%</td>
<td>-95.1%</td>
<td>-53.7%</td>
</tr>
<tr>
<td>DMU18</td>
<td>-1.0%</td>
<td>-0.5%</td>
<td>-0.5%</td>
</tr>
<tr>
<td>DMU19</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>DMU20</td>
<td>-30.5%</td>
<td>-30.5%</td>
<td>-34.8%</td>
</tr>
<tr>
<td>DMU21</td>
<td>-76.3%</td>
<td>-79.4%</td>
<td>-73.4%</td>
</tr>
<tr>
<td>DMU22</td>
<td>-62.2%</td>
<td>-93.0%</td>
<td>-62.2%</td>
</tr>
<tr>
<td>DMU23</td>
<td>-10.9%</td>
<td>-2.1%</td>
<td>-2.1%</td>
</tr>
<tr>
<td>DMU24</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>DMU25</td>
<td>-74.3%</td>
<td>-74.3%</td>
<td>-75.0%</td>
</tr>
</tbody>
</table>

인건비를 감축해야 하는 것으로 분석되었다. DMU18이 가장 적은 감축비율을 보이는 것으로 나타났다. 인건비 측면에서는 DMU15가 현재보다 75.5%를 줄여야 효율적인 상태가 되는 것으로 분석되어 가장 높은 인건비 감축비율을 보이는 것으로 나타났다. 광고·선전비에서는 DMU17이 기준보다 95.1% 감축해야 하는 것으로 나타났으며, 점대비가 가장 많이 감축되어야 하는 것은 75.0%의 DMU25로 분석되었다.

V. 결론

효율성 측정 결과 CCR모형의 기술효율성 분석 중 6개의 DMU와 BCC모형의 순수기술효율성 분석 중 8개의 DMU가 효율적인 상태인 것으로 나타났다. 또한 BCC모형과 CCR모형을 비교한 규모의 효율성 분석과 비효율성의 원인은 순수기술 효율성의 투입물 조합의 문제가 아닌 규모의 문제인 것으로 나타났다.

규모의 수익측면에서는 전체 DMU의 24%인 6개의 DMU가 규모수익계층상태로 인수합병 등을 통해 기업규모를 확장하는 것을 고려할 수 있는 것으로 나타났다. 반면 전체 DMU의 52%인 13개 DMU가 규모수익계층상태의 것으로 나타나 규모조정을 통해 기업규모를 현재보다 축소하는 것이 합리적인 방법인 것으로 분석되었다.

기술효율성 분석결과 복수의 효율적인 상태의 DMU가 존재하는 경우 효율상태의 DMU간의 순위와 효율성수준을 파악할 수 없기 때문에 효율성 분석을 실시한다. 본 연구에서는 효율성 분석 결과 가장 효율성이 높은 DMU의 효율성 수준은 1.314, 다음은 1.243으로 나타났다. 이는 광고·선전비, 점대비, 인건비 투입에서 각각 31.4%, 24.3% 증가시키더라도 현재의 효율적인 상태를 유지할 수 있다는 것을 의미한다.

분석결과 국내 해운기업은 효율적인 기업이 비해 효율성이 상대적으로 뒤떨어진 상태로 판단된
다. 비효율적인 기업은 효율성을 개선하기 위해 인건비 절감을 위한 사내 중대형성, 임금피크 제 도입, 일자리 나누기 등의 방식을 도입할 필요가 있다. 또한 광고·선전비와 점담비 효율성 개선을 위해 효과적인 홍보·정책을 수립하고 불필요한 집단문화를 개선하는 등의 방식을 모색하는 것이 바람직할 것으로 판단된다.

본 논문은 기존 연구에서 미흡했던 국내 해운기업의 세부 비용인 점담비와 광고·선전비, 인건비를 모두 고려하여 효율성을 평가하고, 초효율성 분석을 통해 의사결정단위의 효율성을 파악하였으며 비용을 의사결정단위의 비효율성 개선을 위한 목표치를 제시하였는데 의의가 있다.

반면 본 논문은 국내 해운기업의 효율성에 대한 정적적 분석으로 동태적 분석에 한계가 있으며 자료의 한계성으로 인해 연구대상이 제한되어 국내 전체 해운기업으로 해석를 확장하는 여려움이 있어 향후 국내 해운기업에 대한 심층적인 연구가 수행되어야 할 것으로 보인다. 또한 본 연구의 분석방 IEA와 초효율성 모형은 효율적인 의사결정단위 간 차이를 분석할 수 있으나 시기별 효율성 변화를 파악하는데 한계가 존재하며, 추가 SMB 모형을 이용한 분석을 통해 잔여분(Slack)까지 고려한 연구가 필요할 것이다.

참고문헌
고대경(2013), "DEA를 이용한 해운·물류 기업의 동태적 경영성과에 관한 연구", 중앙대학교 글로벌인적자원개발학원 석사학위논문.
고대경·우수현·강호원(2014), "DEA를 이용한 해운·물류 기업의 경영성과에 관한 연구", "한국항만경제학회지", 제30권 제2호, 93-112.
김정기·김다연(2008), "국내 해운물류 기업의 경영 효율성 분석", "Enter Journal of information Technology", 제7권 제2호, 141-150.
박장석·구홍순·황경연(2012), "국내 해역 주요 해운선 사의 효율성 및 생산성 비교 분석 DEA와 Malquist 생산성지수 활용", "해운물류연구", 제75권, 1-33.
황경연·조종순(2011), "국내외 컨테이너선사의 효율성 비교를 통한 국제경쟁력 평가", "통상정보연구", 제13권 제1호, 123-144.
Vol. 2 issue. 6, 429-444.

금융감독원 전자공시시스템 (dart, fss, or, kr)
DEA모형을 이용한 국적선사의 경영효율성 분석
-접대비와 광고선전비를 중심으로-
박현준 · 김현아 · 임영태

국문요약
본 연구는 자료포탈분석법(DEA)을 이용하여 기업의 경영관리비용인 접대비, 광고·선전비, 인건비를 중심으로 국내 해운기업의 경영효율성을 평가하고자 하였다.
본석의 대상은 2010년부터 2014년까지 국내증시에 상장된 해운기업이다. 두업변수로 접대비, 광고·선전비, 인건비를 설정하였으며 산출변수는 매출액과 당기순이익으로 하였다. 본 연구에서는 기술효율성, 순수기술효율성, 규모효율성 및 규모수익을 도출하였으며 비효율 DMU의 효율성 개선방안을 제시하였다.
효율성 측정 결과 CCR모형의 기술효율성 분석에서 6개의 DMU와 BCC모형의 순수기술효율성 분석에서 8개의 DMU가 효율적인 상태의 것으로 나타났다. 규모의 수익측면에서는 전체 DMU의 24%인 6개의 DMU가 규모수익에서만상태이며, 전체 DMU의 52%인 13개 DMU가 규모수익재감상태인 것으로 나타났다.
기술효율성 분석결과 모든의 효율적인 상태의 DMU가 존재하여 초효율성 분석을 실시한다. 본 연구에서는 초효율성 분석 결과 가장 효율성이 높은 DMU의 효율성 수준은 1,314, 다음은 1,343으로 나타났다. 이는 광고·선전비, 접대비, 인건비 두업에서 각각 31.4%, 24.3% 증가시키더라도 현재의 효율적인 상태를 유지할 수 있다는 것을 의미한다.
본 연구는 해운기업의 접대비와 광고·선전비, 인건비의 효율성을 평가하고, 초효율성 분석을 통해 의사결정단위의 순위를 파악하였으며 비효율 의사결정단위의 비효율성 개선을 위한 목표치를 제시하였는데 의의가 있다.

주제어: 자료포탈분석모형, 해운기업, 접대비, 광고비, 효율성 분석