References
- Das UN. Molecular basis of health and disease. Springer publishing, NewYork, USA. pp. 15-16. (2011)
- Coussens LM, Werb Z. Inflammation and cancer. Nature 420: 860-867 (2002) https://doi.org/10.1038/nature01322
- Murata M, Thanan R, Ma N, Kawanishi S. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J. Biomed. Biotechnol. 623019 (2012)
- Baltimore D. Discovering NF-kappaB. Cold Spring Harb. Perspect. Biol. 1: a000026 (2009)
- Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 132: 344-362 (2008) https://doi.org/10.1016/j.cell.2008.01.020
- Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb. Perspect. Biol. 2: a000109 (2010)
- Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kB as the matchmaker. Nat. Immunol. 12: 715-723 (2011) https://doi.org/10.1038/ni.2060
- Brasier AR. The NF-kappaB regulatory network. Cardiovasc. Toxicol. 6: 111-130 (2006) https://doi.org/10.1385/CT:6:2:111
- Mishra BB, Tiwari VK. Natural products: an evolving role in future drug discovery. Eur. J. Med. Chem. 46: 4769-4807 (2011) https://doi.org/10.1016/j.ejmech.2011.07.057
- Choi SZ, Yang MS, Choi SU, Lee KR. Cytotoxic terpenes and lignans from the roots of Ainsliaea acerifolia. Arch. Pharm. Res. 29: 203-208 (2006) https://doi.org/10.1007/BF02969394
- Jung CM, Kwon HC, Choi SZ, Lee JH, Lee DJ, Ryu SN, Lee KR. Phytochemical constituents of Ainsliaea acerifolia. Korean J. Pharmacogn. 31: 125-129 (2000)
- Lee EW, Kim TW, Kim HS, Park YM, Kim SH, Im MH, Kwak JH, Kim TH. Antioxidant and a-glucosidase inhibitory effects of ethanolic extract of Ainsliaea acerifolia and organic solvent-soluble fractions. Korean J. Food Preserv. 22: 275-280 (2015) https://doi.org/10.11002/kjfp.2015.22.2.275
- Moon HI, Ji OP, Shin MS. Effects of compounds isolated from Ainsliaea acerifolia on the hepatic alcohol dehydrogenase activity. J. Appl. Biol. Chem. 42: 162-165 (1999)
- Moon HI, Ji OP, Moon SH, Shin MS. Effect of Ainsliaea acerifolia fraction extract on alcohol dehydrogenase activity. J. Appl. Biol. Chem. 41: 447-450 (1998)
- Shin SG, Kang JK, Lee KR, Lee HW, Han JW, Choi WS. Suppression of inducible nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 macrophages by sesquiterpene lactones. J. Toxicol. Environ. Health A. 68: 2119-2131 (2005) https://doi.org/10.1080/15287390591009506
- Ando M, Kusaka H, Ohara H, Takase K, Yamaoka H, Yanagi Y. Studies on the syntheses of sesquiterpene lactones. 11. The syntheses of 3-epizaluzanin C zaluzanin C, zaluzanin D, and related compounds 3a-hydroxyguaia-1(10),4 (15),11(13)-trieno-12,6a-lactone and 3a-hydroxyguaia-4(15),9,11(13)-trieno-12, 6a-lactone. J. Org. Chem. 54: 1952-1960 (1989) https://doi.org/10.1021/jo00269a039
- Vahora H, Khan MA, Alalami U, Hussain A. The potential role of nitric oxide in halting cancer progression through chemoprevention. J. Cancer Prev. 21: 1-12 (2016) https://doi.org/10.15430/JCP.2016.21.1.1
- Iwakiri Y. Nitric oxide in liver fibrosis: The role of inducible nitric oxide synthase. Clin. Mol. Hepatol. 21: 319-325 (2015) https://doi.org/10.3350/cmh.2015.21.4.319
- Olszowski T, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Pro-inflammatory properties of cadmium. Acta. Biochim. Pol. 59: 475-482 (2012)
- Ma N, Kawanishi M, Hiraku Y, Murata M, Huang GW, Huang Y, Luo DZ, Mo WG, Kawanishi S. Reactive nitrogen species-dependent DNA damage in EBV-associated nasopharyngeal carcinoma: The relation to STAT3 activation and EGFR expression. Int. J. Cancer 122: 2517-2525 (2008) https://doi.org/10.1002/ijc.23415
- Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-kappaB functions as a tumor promoter in inflammation-associated cancer. Nature 431: 461-466 (2004) https://doi.org/10.1038/nature02924
-
Bannon A, Zhang SD, Schock BC, Ennis M. Cystic fibrosis from laboratory to bedside: The role of A20 in NF-
${\kappa}B$ -mediated inflammation. Med. Princ. Pract. 24: 301-310 (2015) https://doi.org/10.1159/000381423 - Pamukcu B, Lip GY, Shantsila E. The nuclear factor-kappa B pathway in atherosclerosis: A potential therapeutic target for atherothrombotic vascular disease. Thromb. Res. 128: 117-123 (2011) https://doi.org/10.1016/j.thromres.2011.03.025
- Neumann M, Naumann M. Beyond IkappaBs: Alternative regulation of NF-kappaB activity. FASEB J. 21: 2642-2654 (2007) https://doi.org/10.1096/fj.06-7615rev
-
Tokunaga F. Linear ubiquitination-mediated NF-
${\kappa}B$ regulation and its related disorders. J. Biochem. 154: 313-323 (2013) https://doi.org/10.1093/jb/mvt079 - Maine GN, Mao X, Komarck CM, Burstein E. COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullincontaining ubiquitin ligase. EMBO J. 26: 436-447 (2007) https://doi.org/10.1038/sj.emboj.7601489