DOI QR코드

DOI QR Code

Anti-inflammatory effect of zaluzanin C on lipopolysaccharide-stimulated murine macrophages

지방질다당류로 자극한 마우스 대식세포에 있어서 zaluzanin C의 항염증 효과

  • Kang, Ye Rim (Department of Food and Nutrition, College of Engineering, Daegu University) ;
  • Lee, Hee Won (Department of Food and Nutrition, College of Engineering, Daegu University) ;
  • Kim, Yoon Hee (Department of Food and Nutrition, College of Engineering, Daegu University)
  • 강예림 (대구대학교 식품영양학과) ;
  • 이희원 (대구대학교 식품영양학과) ;
  • 김윤희 (대구대학교 식품영양학과)
  • Received : 2016.04.27
  • Accepted : 2016.06.10
  • Published : 2016.08.31

Abstract

Zaluzanin C is a sesquiterpene lactone isolated from Ainsliaea acerifolia, a Korean medicinal plant. In the present study, the anti-inflammatory effects of zaluzanin C were demonstrated in lipopolysaccharide (LPS)-stimulated murine macrophages (RAW264.7 cells). Zaluzanin C inhibited the release of nitric oxide (NO) by alleviating the protein expression of inducible NO synthase in LPS-treated RAW264.7 cells. Furthermore, it suppressed the release of interleukin-6 induced by LPS. Zaluzanin C was also found to block the translocation of the p65 subunit of nuclear factor-kB from the cytosol to the nucleus, which is one of the underlying mechanisms of the anti-inflammatory action of zaluzanin C. These data suggest the potential of zaluzanin C in the treatment of inflammatory diseases.

천연물 유래 단일 성분의 항염증 효과에 대한 잠재성을 평가하는 스크리닝의 일환으로 11종의 단일 물질을 대상으로 항염증 효과를 탐색한 결과, 단풍취에서 분리정제한 zaluzanin C의 산화질소(II) 생성 억제능이 뛰어난 것을 확인하였다. 따라서 본 연구에서는 단풍취에서 분리정제한 zaluzanin C가 지질다당류로 자극한 마우스 대식세포인 RAW264.7 세포에서 염증반응에 미치는 영향에 대해 평가하고, 관련 메커니즘에 대해 검토하였다. Zaluzanin C는 LPS 자극에 의해 유도된 iNOS 단백질 발현양을 감소시킴으로써 산화질소(II) 생성을 억제할 뿐만 아니라 IL-6와 같은 염증 유발 사이토카인의 분비를 억제하였다. 이러한 효과는 전사인자인 NF-kB의 세포질에서 핵으로의 이동을 억제함으로써 나타나는 것으로 판단된다. 이러한 결과로부터, zaluzanin C가 염증 반응을 저해하는 효과가 있는 것으로 나타나, 향후 염증성 질환을 예방, 개선 및 치료하는데 유용한 물질로 사용될 가능성이 있을 것으로 생각된다. 하지만 이를 위해서는 zaluzanin C의 생체 내 이용률 및 생리적 활성 농도 등에 대한 추가 연구가 필요한 것으로 생각된다.

Keywords

References

  1. Das UN. Molecular basis of health and disease. Springer publishing, NewYork, USA. pp. 15-16. (2011)
  2. Coussens LM, Werb Z. Inflammation and cancer. Nature 420: 860-867 (2002) https://doi.org/10.1038/nature01322
  3. Murata M, Thanan R, Ma N, Kawanishi S. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J. Biomed. Biotechnol. 623019 (2012)
  4. Baltimore D. Discovering NF-kappaB. Cold Spring Harb. Perspect. Biol. 1: a000026 (2009)
  5. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell 132: 344-362 (2008) https://doi.org/10.1016/j.cell.2008.01.020
  6. Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb. Perspect. Biol. 2: a000109 (2010)
  7. Ben-Neriah Y, Karin M. Inflammation meets cancer, with NF-kB as the matchmaker. Nat. Immunol. 12: 715-723 (2011) https://doi.org/10.1038/ni.2060
  8. Brasier AR. The NF-kappaB regulatory network. Cardiovasc. Toxicol. 6: 111-130 (2006) https://doi.org/10.1385/CT:6:2:111
  9. Mishra BB, Tiwari VK. Natural products: an evolving role in future drug discovery. Eur. J. Med. Chem. 46: 4769-4807 (2011) https://doi.org/10.1016/j.ejmech.2011.07.057
  10. Choi SZ, Yang MS, Choi SU, Lee KR. Cytotoxic terpenes and lignans from the roots of Ainsliaea acerifolia. Arch. Pharm. Res. 29: 203-208 (2006) https://doi.org/10.1007/BF02969394
  11. Jung CM, Kwon HC, Choi SZ, Lee JH, Lee DJ, Ryu SN, Lee KR. Phytochemical constituents of Ainsliaea acerifolia. Korean J. Pharmacogn. 31: 125-129 (2000)
  12. Lee EW, Kim TW, Kim HS, Park YM, Kim SH, Im MH, Kwak JH, Kim TH. Antioxidant and a-glucosidase inhibitory effects of ethanolic extract of Ainsliaea acerifolia and organic solvent-soluble fractions. Korean J. Food Preserv. 22: 275-280 (2015) https://doi.org/10.11002/kjfp.2015.22.2.275
  13. Moon HI, Ji OP, Shin MS. Effects of compounds isolated from Ainsliaea acerifolia on the hepatic alcohol dehydrogenase activity. J. Appl. Biol. Chem. 42: 162-165 (1999)
  14. Moon HI, Ji OP, Moon SH, Shin MS. Effect of Ainsliaea acerifolia fraction extract on alcohol dehydrogenase activity. J. Appl. Biol. Chem. 41: 447-450 (1998)
  15. Shin SG, Kang JK, Lee KR, Lee HW, Han JW, Choi WS. Suppression of inducible nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 macrophages by sesquiterpene lactones. J. Toxicol. Environ. Health A. 68: 2119-2131 (2005) https://doi.org/10.1080/15287390591009506
  16. Ando M, Kusaka H, Ohara H, Takase K, Yamaoka H, Yanagi Y. Studies on the syntheses of sesquiterpene lactones. 11. The syntheses of 3-epizaluzanin C zaluzanin C, zaluzanin D, and related compounds 3a-hydroxyguaia-1(10),4 (15),11(13)-trieno-12,6a-lactone and 3a-hydroxyguaia-4(15),9,11(13)-trieno-12, 6a-lactone. J. Org. Chem. 54: 1952-1960 (1989) https://doi.org/10.1021/jo00269a039
  17. Vahora H, Khan MA, Alalami U, Hussain A. The potential role of nitric oxide in halting cancer progression through chemoprevention. J. Cancer Prev. 21: 1-12 (2016) https://doi.org/10.15430/JCP.2016.21.1.1
  18. Iwakiri Y. Nitric oxide in liver fibrosis: The role of inducible nitric oxide synthase. Clin. Mol. Hepatol. 21: 319-325 (2015) https://doi.org/10.3350/cmh.2015.21.4.319
  19. Olszowski T, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Pro-inflammatory properties of cadmium. Acta. Biochim. Pol. 59: 475-482 (2012)
  20. Ma N, Kawanishi M, Hiraku Y, Murata M, Huang GW, Huang Y, Luo DZ, Mo WG, Kawanishi S. Reactive nitrogen species-dependent DNA damage in EBV-associated nasopharyngeal carcinoma: The relation to STAT3 activation and EGFR expression. Int. J. Cancer 122: 2517-2525 (2008) https://doi.org/10.1002/ijc.23415
  21. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-kappaB functions as a tumor promoter in inflammation-associated cancer. Nature 431: 461-466 (2004) https://doi.org/10.1038/nature02924
  22. Bannon A, Zhang SD, Schock BC, Ennis M. Cystic fibrosis from laboratory to bedside: The role of A20 in NF-${\kappa}B$-mediated inflammation. Med. Princ. Pract. 24: 301-310 (2015) https://doi.org/10.1159/000381423
  23. Pamukcu B, Lip GY, Shantsila E. The nuclear factor-kappa B pathway in atherosclerosis: A potential therapeutic target for atherothrombotic vascular disease. Thromb. Res. 128: 117-123 (2011) https://doi.org/10.1016/j.thromres.2011.03.025
  24. Neumann M, Naumann M. Beyond IkappaBs: Alternative regulation of NF-kappaB activity. FASEB J. 21: 2642-2654 (2007) https://doi.org/10.1096/fj.06-7615rev
  25. Tokunaga F. Linear ubiquitination-mediated NF-${\kappa}B$ regulation and its related disorders. J. Biochem. 154: 313-323 (2013) https://doi.org/10.1093/jb/mvt079
  26. Maine GN, Mao X, Komarck CM, Burstein E. COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullincontaining ubiquitin ligase. EMBO J. 26: 436-447 (2007) https://doi.org/10.1038/sj.emboj.7601489