DOI QR코드

DOI QR Code

Effects of ethanol extract of Polygonatum sibiricum rhizome on obesity-related genes

황정 에탄올 추출물의 비만 조절 유전자에 대한 효과

  • Jeon, Woo-Jin (Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Lee, Do-Seop (Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Shon, Suh-Youn (Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Seo, Yun-Ji (Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Yeon, Seung-Woo (Research Laboratories, ILDONG Pharmaceutical Co., Ltd.) ;
  • Kang, Jae-Hoon (Research Laboratories, ILDONG Pharmaceutical Co., Ltd.)
  • 전우진 (일동제약(주) 중앙연구소) ;
  • 이도섭 (일동제약(주) 중앙연구소) ;
  • 손서연 (일동제약(주) 중앙연구소) ;
  • 서윤지 (일동제약(주) 중앙연구소) ;
  • 연승우 (일동제약(주) 중앙연구소) ;
  • 강재훈 (일동제약(주) 중앙연구소)
  • Received : 2016.04.15
  • Accepted : 2016.05.22
  • Published : 2016.08.31

Abstract

In previous studies, we confirmed that the ethanol extract of Polygonatum sibiricum (ID1216) has anti-obesity effects on high-fat diet-fed mice. To identify the obesity-related genes affected by ID1216, we studied its effects both in vivo and in vitro. In mice, single administration of ID1216 increased the expression of obesity-related genes including sirtuin1 (SIRT1), peroxisome proliferator-activated receptor ${\gamma}$ coactivator $1{\alpha}$ ($PGC1{\alpha}$) and peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) compared to that in mice administered the vehicle; their downstream genes (uncoupling proteins, acyl-CoA oxidase, adipocyte protein 2, and hormone-sensitive lipase) were also increased by ID1216. In fully differentiated 3T3-L1 adipocytes, ID1216 showed the same effects on anti-obesity genes as those in the animal model. Based on these results, we propose that ID1216 has anti-obesity effects by regulating the $SIRT1-PGC1{\alpha}-PPAR{\alpha}$ pathway and their downstream genes, thereby controlling energy and lipid metabolisms.

선행연구(12,13)에 따르면 10주간 ID1216을 투여한 비만 마우스에서 체중과 체지방이 감소하였고 이는 SIRT1-$PGC1{\alpha}$의 발현을 조절하여 나타나는 것으로 확인하였다. 본 연구는 $SIRT1-PGC1{\alpha}-PPAR{\alpha}$의 하위 기전인 UCPs, ACO, aP2의 발현 조절에 ID1216이 영향을 미쳐 그 효과를 나타내는 것을 추가로 확인한 것에 의미가 있다. 또한 10주간 ID1216을 투여한 비만 마우스의 혈액 분석 결과에서도 혈중 중성지방, LDL, HDL total cholesterol등의 혈중 지방질 수치가 개선됨과 동시에 free fatty acid의 농도는 감소하였는데 이는 ID1216이 HSL과 같은 지방질분해효소의 활성을 조절하여 중성지방의 분해과정에 관여하기는 하나 에너지 대사와 지방산 산화 과정에도 복합적으로 관여하여 최종적으로 나타내는 비만 대사 조절 효과에 의한 것으로 판단된다. 따라서 ID1216은 $SIRT1-PGC1{\alpha}-PPAR{\alpha}$ pathway를 촉진시켜 세포와 조직 수준에서 열발생(thermogenesis)에 관여하는 유전자인 UCP1, UCP2, UCP3의 발현을 증가시켰고 ${\beta}$-oxidation에 관여하는 유전자인 ACO와 aP2의 발현도 증가시켰으며 또한 지방분해(lypolysis)에 관여하는 유전자인 ATGL과 HSL의 발현을 증가시키는 분자생물학적 기전을 나타내어 체지방 감소 효과를 나타내는 것으로 확인되었다.

Keywords

References

  1. Thorp AA, Schlaich MP. Relevance of sympathetic nervous system activation in obesity and metabolic syndrome. J. Diabetes Res. 2015: 341583 (2015)
  2. Ministry of Health and Welfare of Korea, Korea Centers for Disease Control and Prevention. The Korea National Health and Nutrition Examination Survey (KNHANES) 2015. Seoul. Ministry of Health and Welfare of Korea (2015)
  3. Cheung BMY, Cheung TT, Samaranayake NR. Safe of antiobesity drugs. Ther. Adv. Drug Saf. 4: 171-181 (2013) https://doi.org/10.1177/2042098613489721
  4. Shen Y, Song SJ, Keum NR, Park TS. Olive leaf extract attenuates obesity in high-fat diet-fed mice by modulating the expression of molecules involved in adipogenesis and thermogenesis. Evid.-Based Sed. Compl. Alt. 2014: 971890 (2014)
  5. Korea Health Industry Development institute. The study on amendment of pesticide maximum residues limit for oriental medicine (II). Korea Food and Drug Administration. p. 68 (2002)
  6. Chen K, Li C. Recent advances in studies on traditional Chinese anti-aging materia medica. J. Tradit. Chin. Med. 13: 223-226 (1993)
  7. Choi SB, Park SM. A steroidal glycoside from Polygonatum odoratum (Mill.) Druce. improves insulin resistance but does not alter insulin secretion in 90% pancreatectomized rats. Biosci. Biotechnol. Biochem. 66: 2036-2043 (2002) https://doi.org/10.1271/bbb.66.2036
  8. Toshihiro M, Atsushi K. The difference in hypoglycemic action between polygonati rhizoma and polygonati officinalis rhizoma. Biol. Pharm. Bull. 18: 1605-1606 (1995) https://doi.org/10.1248/bpb.18.1605
  9. Gu M, Zhang y, Fan S, Ding X, Ji G, Huang C. Extracts of Rhizoma Polygonati odorati prevent high-fat diet-induced metabolic disorders in C57BL/6 Mice. PLoS One 8: e81724 (2013) https://doi.org/10.1371/journal.pone.0081724
  10. Debnath T, Park SR, Kim DH, Jo JE, Lim BO. Antioxidant and anti-inflammatory activity of Polygonatum sibiricum rhizome extracts. Asian Pac. J. Trop. Dis. 3: 308-313 (2013) https://doi.org/10.1016/S2222-1808(13)60074-2
  11. Shu X, Lv J, Chen D, Chen Y. Anti-diabetic effects of total flavonoids from Polygonatum sibiricum red in induced diabetic mice and induced diabetic rats. Herald J. Biochem. Bioinform. 1:14-19 (2012)
  12. Ko JH, Kwon HS, Yoon JM, Yoo JS, Jang HS, Kim JY, Yeon SW, Kang JH. Effects of Polygonatum sibiricum rhizome ethanol extract in high-fat diet-fed mice. Pharm. Biol. 53: 563-570 (2015) https://doi.org/10.3109/13880209.2014.932393
  13. Ko JH, Jeon WJ, Kwon HS, Yeon SW, Kang JH. Anti-obesity effects of ethanolic extract of Polygonatum sibiricum rhizome in high-fat diet-fed mice. Korean J. Food Sci. Technol. 47: 499-503 (2015) https://doi.org/10.9721/KJFST.2015.47.4.499
  14. Scarpulla RC, Vega RB, Kelly DP. Transcriptional integration of mitochondrial biogenesis. Trends Endocrin. Met. 23: 459-466 (2012) https://doi.org/10.1016/j.tem.2012.06.006
  15. Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. P. Natl. Acad. Sci. USA 104: 12017-12022 (2007) https://doi.org/10.1073/pnas.0705070104
  16. Reznick RM, Shulman GI. The role of AMP-activated protein kinase in mitochondrial biogenesis. J. Physiol. 574: 33-39 (2006) https://doi.org/10.1113/jphysiol.2006.109512
  17. Medina-Gomez G, Gray S, Vidal-Puig A. Adipogenesis and lipotoxicity: Role of peroxisome proliferator activated receptor $\gamma$ ($PPAR{\gamma}$) and PPAR $\gamma$ coactivator-1 (PGC1). Public Health Nutr. 10: 1132-1137 (2007).
  18. Villarroya F, Iglesias R, Giralt M. PPARs in the control of uncoupling proteins gene expression. PPAR Res. 2007: 74364 (2007)
  19. Park EY, Kim MH, Kim EH, Lee EK, Park IS, Yang DC, Jun HS. Efficacy comparison of Korean ginseng and American ginseng on body temperature and metabolic parameters. Am. J. Chin. Med. 42: 173-187 (2014) https://doi.org/10.1142/S0192415X14500128
  20. van Baak MA, Hul GBJ, Toubro S, Astrup A, Gottesdiener KM, DeSmet M, Saris WHM. Acute effect of L-796568, a novel beta 3-adrenergic receptor agonist, on energy expenditure in obese men. Clin. Pharmacol. Ther. 71: 272-279 (2002) https://doi.org/10.1067/mcp.2002.122527
  21. Goto T, Lee JY, Teraminami A, Kim YI, Hirai S, Uemura T, Inoue H, Takahashi N, Kawada T. Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. J. Lipid Res. 52: 873-884 (2011) https://doi.org/10.1194/jlr.M011320
  22. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature 405: 421-424 (2000) https://doi.org/10.1038/35013000
  23. Fuchs CD, Claudel T, Trauner M. Role of metabolic lipases and lipolytic metabolites in the pathogenesis of NAFLD. Trends Endocrin. Met. 25: 576-585 (2014) https://doi.org/10.1016/j.tem.2014.08.001
  24. Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48: 275-297 (2009) https://doi.org/10.1016/j.plipres.2009.05.001
  25. Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P. Metabolic adaptations through the PGC-1a and SIRT1 pathways. FEBS Lett. 582: 46-53 (2008) https://doi.org/10.1016/j.febslet.2007.11.034
  26. Lee MS, Kim CT, Kim IH, Kim YH. Inhibitory effects of Green tea catechin on the lipid accumulation in 3T3-L1 adipocytes. Phytother. Res. 23: 1088-1091 (2009) https://doi.org/10.1002/ptr.2737
  27. Lee MS, Kim CT, Kim IH, Kim YH. Effects of Capsaicin on lipid catabolism in 3T3-L1 adipocytes. Phytother. Res. 25: 935-939 (2011) https://doi.org/10.1002/ptr.3339

Cited by

  1. Effects of a traditional Chinese medicine formula and its extraction on muscle fiber characteristics in finishing pigs, porcine cell proliferation and isoforms of myosin heavy chain gene expression in myocytes vol.30, pp.11, 2017, https://doi.org/10.5713/ajas.16.0872