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Abstract

In this paper, we propose an election protocol based on mobile ad-hoc network. In distributed 

systems, a group of computer should continue to do cooperation in order to finish some jobs. In such 

a system, an election protocol is especially practical and important elements to provide processes in 

a group with a consistent common knowledge about the membership of the group. Whenever a 

membership change occurs, processes should agree on which of them should do to accomplish an 

unfinished job or begins a new job. The problem of electing a leader is very same with the agreeing 

common predicate in a distributed system such as the consensus problem. Based on the termination 

detection protocol that is traditional one in asynchronous distributed systems, we present the new 

election protocol in distributed systems that are based on MANET, i.e. mobile ad hoc network. 

▸ Keyword : Synchronous Distributed Systems, Leader Election, Fault Tolerance, Mobile Ad Hoc Network.

I. Introduction

In distributed systems, a group of computer should 

continue to do cooperation in order to finish some jobs. 

The election protocol is especially helpful tools since it is 

closely related to group communication [1], which (among 

other uses) provides a powerful basis for implementing 

active replications. Whenever a membership change 

occurs, processes can consent to which of them should 

do to finish a waiting job or begin a new job. The problem 

of constructing a stable election protocol is very same 

with the one of getting common knowledge in a 

synchronous distributed system such as the consensus 

problem [1]. 

The Election problem [1] is defined as that a unique 

coordinator be elected from a given group of processes. 

Many research has been widely done so far based on 

only wired network environment in the research 

community [2,3,4,5,6,7]. 

Because many distributed protocols need an election 

protocol to build fault tolerant distributed systems. 

However, to our knowledge, there is a few work that has 

been devoted to this problem in a mobile ad hoc network 

environment. 

When nodes are moving, based on topology change 

nodes would dynamically join and leave the mobile ad hoc 

network. In such mobile ad hoc networks, leader election 

can arise more frequently and having it a particularly 

critical element of fault tolerant distributed system 

operation. 

Mobile ad hoc systems are more often subject to 

environmental adversities which can cause loss of 

messages or data [8]. In particular, a mobile node can fail 
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or disconnect from the rest of the network. Designing 

fault tolerant distributed systems in such an MANET 

environment is a difficult and complex effort. Leader 

election protocols for MANET have been proposed in 

[9,10]. In this paper, we are focused on an 

extrema-finding algorithm, because we believe it is 

desirable to elect a leader with some system-related 

attributes such as maximum battery life or maximum 

computation power. The algorithms in [9] are not 

extrema-finding algorithm and it cannot be extended to 

perform extrema finding. Although, extrema-finding 

leader election algorithms for mobile ad hoc networks 

have been proposed in [10], these algorithms are 

unrealistic as they require nodes to meet and exchange 

information in order to elect a leader and therefore they 

are not well-suited to the applications discussed earlier.

Several clustering algorithms have been proposed for 

mobile networks (e.g. [11], [12]), but these algorithms 

elect cluster-heads only within their single hop 

neighborhood. 

The aim of this paper is to propose a solution to the 

election problem in a specific ad hoc mobile computing 

environment. This solution is based on the group 

membership detection algorithm that is a classical one for 

synchronous distributed systems. The rest of this paper 

is organized as follows: Section 2 describes the mobile 

system model we use. In Section 3, a solution to the 

election problem in a conventional synchronous system is 

presented. A protocol to solve the election problem in a 

mobile ad hoc computing system is presented in Section 

4. We conclude in Section 5.

II. System Model, Constraints and

Assumptions

In Section 3, a solution to the election problem in a 

conventional synchronous system is presented. A protocol 

to solve the election problem in a mobile ad hoc 

computing system is presented in Section 4. We conclude 

in Section 5. 

Before developing a leader election algorithm for 

ad-hoc computing environments, we first define our 

system model based upon assumptions and goals. We 

model an ad hoc network as an undirected graph, i.e., G = 

( V, E ), where vertices V correspond to set of mobile 

nodes {1, 2,….,n} ( n >1 ) with unique identifiers and 

edges E between a pair of nodes represent the fact that 

the two nodes are within each other’s transmission radii 

and, hence, can directly communicate with one another 

that changes over time as nodes move. Each process i 

has a variable Ni, which indicates the neighboring nodes, 

with that i can directly communicate the neighboring 

nodes. We assume that every communication channel is 

bidirectional; j∈ Ni iff i∈ Nj. More precisely, in the 

network G = ( V, E ), we can define E such that for all i∈

V, (i, j) ∈ E if and only if i∈ Nj. The graph can become 

disconnected if the network is partitioned due to node 

movement. Because the nodes may changes their location, 

Ni may be dynamically changed and so may G 

accordingly. We make the following assumptions about 

the nodes and system architecture: 

- Each node has a weight value Wi associated with it. 

The value of a node indicates its “priority” as a leader of 

the system and can be calculated upon some criteria such 

as the node’s battery power, the position where the 

node’s distance from other nodes is minimal, 

computational capabilities etc.

- All nodes have unique identifiers. They are used to 

identify participants during the election process. Node IDs 

are used to break ties among nodes which have the same 

value.

- Links are bidirectional and FIFO, i.e. messages are 

delivered in order over a link between two neighbors.

- Node mobility may result in arbitrary topology 

changes including network partitioning and merging. 

Furthermore, nodes can crash arbitrarily at any time and 

can come back up again at any time. 

- A message delivery is guaranteed only when the 

sender and the receiver remain connected (not 

partitioned) for the entire duration of message transfer. 

Each node has a sufficiently large receive buffer to avoid 

buffer overflow at any point in its lifetime. 

The objective of our leader election algorithm is to 

ensure that after a finite number of topology changes, 

eventually each node i has a leader which is the 

most-valued-node from among all nodes in the connected 

component to which i belongs. 
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III. Leader Election Algorithm in a Static

Network

In this section, we describe a leader election algorithm 

based on group membership detection algorithm, simply 

GMDA, by diffusing computations. In later sections, we 

will discuss in detail how this algorithm can be adapted to 

a mobile setting.

3.1 Leader Election in a Static Network

We first describe our election algorithm in the 

environment of a static network, where we assume that 

nodes and links never fail. The algorithm consists of two 

phases operated at the node that initiates the election 

algorithm. 1) Scattering phase- it operates by first 

“scattering the election message” and 2) Gathering 

phase- it operates by then “gathering the id of each 

node” that is connected to the static networks. We refer 

to this computation-initiating node as the source node. As 

we will see, after gathering all nodes’ ids completely, the 

source node will have the information enough to 

determine the most-valued-node and will then broadcast 

its identity to the rest of the nodes in the network. The 

algorithm uses three messages, i.e., Election, Ack and 

Leader. 

1) Scattering phase. Election messages are used to 

initiate the election by “scattering” the election message. 

When election is triggered at a source node s (for 

instance, upon crash or departure of its current leader), 

the node makes a waiting list wl and a received list rl and 

begins a diffusing computation by sending an Election 

message to all of its immediate neighbors. Initially the 

waiting list consists of only its immediate neighboring 

node’s ids and the received list consists of an empty list. 

Every node i other than the source propagates the 

Election message to all of its neighboring nodes except 

the node from which it first received an Election 

message.

When node i receives an Election message from the 

neighboring node for the first time, it immediately sends 

the Ack message to the source node. The Ack message 

sent by node i to the source node contains the ids of all 

its neighboring nodes that is needed for the source node 

to elect a leader.

2) Gathering phase. When the source node receives the 

Ack message from the node j, it removes j from the 

waiting list and puts j into the received list and 

immediately checks one by one the every node id 

contained in the Ack message. If there is the any id in the 

Ack which has already been acknowledged, i.e. that 

means it is in the received list, it is discarded. Otherwise, 

it is put into the waiting list of source node and the 

source node waits the Ack message from it. The waiting 

list is growing and shrinking repeatedly based on the 

received Ack messages, but the received list steadily 

growing by receiving the Ack messages. But eventually 

the waiting list could be empty and the received list could 

include all ids of nodes connected to the networks when 

the source node received the Ack messages from all 

other nodes. Hence the source node eventually has 

sufficient information to determine the most-valued-node 

in the received list, because the waiting list could be 

eventually empty and it means that the source node has 

received the Ack messages from all the nodes. 

3) Completing Phase. Once the source node has 

received Acks from all other nodes, it determines the 

most-valued-node as a leader among the received list 

and broadcasts a Leader message to all other nodes 

announcing the identity of the leader. We illustrate a 

sample execution of the algorithm. We describe the 

algorithm in a somewhat synchronous manner even 

though all the activities are in fact asynchronous. 

Consider the network shown in Figure 1(a). In this figure, 

and for the rest of the paper, thin arrows indicate the 

direction of flow of Election messages and dotted arrows 

indicate the direction of flow of Ack messages to the 

source node. The number adjacent to each node in Figure 

1(a) represents its value. As shown in Figure 1, node A is 

a source node that initializes wla and rlb with {B,C} and 

{A} respectively and starts a diffusing computation by 

sending out Election messages (denoted as “E” in the 

figure) to its immediate neighbors, viz. nodes B and C, 

shown in Figure 1(a).

As indicated in Figure 1(b), nodes B and C in turn 

propagate the Election message to its immediate 

neighbors only except the source node and send the Ack 

message with neighboring node list to the source node A. 

Hence B and C also send Election messages to one 

another. But the Election messages are not acknowledged 

to the source node since nodes B and C have already 

received Election messages from the source node 

respectively. The information about neighboring node is 

piggybacked upon the Ack message sent by each node. 



44   Journal of The Korea Society of Computer and Information 

Upon received Ack messages from B and C, node A 

updates wla = { B,C }, rlb = { A } with the neighboring 

node information piggybacked on the Ack messages. 

In Figure 1(c), the node D and F also send the Ack messages 

to the sources node when they received the Election messages 

from the B and C respectively. Each of these Ack messages 

contains the identities of the neighbor and its actual value. 

Eventually, the source A hears all acknowledgments from all of 

other nodes except itself in Figure 1(d) and then decides the 

most-valued node among them and broadcasts the identity of the 

leader, D, via the Ldr message shown in Figure 1(d).

Fig. 1. An execution of leader election algorithm based on 

the group membership detection algorithm. Arrows on the 

edges indicate transmitted election messages, while dotted 

arrows parallel to the edges indicate Ack messages.  

IV. Leader Election in a Mobile, Ad

Hoc Network

In this section, we redesign the leader election 

algorithm presented above and describe the operation of 

the leader election algorithm in the context of a mobile, 

ad hoc network. In the previous section, we described the 

leader election algorithm in a static network. But with the 

node mobility, node crashes, link failures, network 

partitions and merging of partitions, the simple LE 

algorithm presented in the previous section is inadequate. 

Furthermore, we assumed in the previous section that 

only single node knows as an external input the leader 

crash or failure, departure and it initiates the election 

protocol. In reality, such an assumption is inadequate, 

because many nodes concurrently can receive such inputs 

and each of them starts a leader election protocol 

independently. It results from the lack of knowledge of 

other computations that have been started by other 

nodes. 

We assume that the value of the node is the same as 

its identifier. This assumption has been made only for 

simplicity of presentation without loss of generality. 

Before we formally specify our algorithm and describe it 

in detail, we briefly introduce notation used in our 

algorithm specification and the execution model.

1. numi := 0; ldri := null;
2. statusi : = Norm; one of states in {Norm, Elect, 

Wait}
3. ni := {set of all neighboring processes};
4. cli := { i };  wli := { };
5. e_num : = null;  k : = null; 
6. On statusi = Norm : 
7.   if no_signal from ldri then 
8.      statusi := Elect; 
9.      mumi := mumi +1;  
10.      send election(mumi) to each process of ni;  

end-if
11.     Upon received election(m) from process j: 
12.       statusi= Wait; 
13.       e_num : = m; k : = j; 
14.    send election(m) to each process of ni except j:
15.       send ack(ni) to processes j;
16. On statusi = Elect : 
17.   Upon received ack (q) from process j :
18.     wli : = wli – { j }
19.     cli := cli∪{ j }; 
20.     wli := wli∪{ q - { q ∩ cli } }
21. if wli = empty then checklist(); end-if 
22.   Upon received election(r) from process j :
23.     if { (mumi, i) < (r, j) }  then
24.       send election(r) to each process of ni; 
25.       send ack(ni) to processes j;
26.       e_num : = r; k : = j; 
27.       statusi := Wait; end-if
28. On status = Wait :
29.   Upon received leader(t) from process j : 
30.      ldri := t ;
31.    send leader(ldri) to each process of ni except j; 
32.      statusi := Norm;
33.   Upon received election(r) from process j :
34.     if { (e_mum, k) < (r, j) }  then
35.       send election(r) to each process of ni ; 
36.       send ack(ni) to processes j; 
37.       e_num : = r; k : = j; 
38.     end-if
39. Checklist() : 
40.   ldri := max (cli)   
41.   send leader (ldri ) to each process of ni ; 
42.    statusi := Norm;

Fig. 2. A leader election algorithm in mobile ad hoc 

computing environments based on the group membership 

detection algorithm.
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4.1 Algorithm Performed By the Nodes

In this section, we describe the exact algorithm 

performed by an arbitrary node i. The exact algorithm is 

shown in Figure 2. The Leader Election module on every 

node loops forever and on each iteration checks if any of 

the actions in the algorithm specification are enabled, 

executing at least one enabled action on every loop 

iteration. The bootstrapping of election module involves 

assigning values variables in line 1-5 of fig. 2 as 

specified in the initialization part of the Leader Election 

module. 

1) Initiate Election: The leader of a connected 

component periodically sends a heartbeat messages to 

other nodes. The election process is triggered in node i 

when it does not receive the messages from the leader 

due to its departure or crash, as denoted by line 7-8 in 

the algorithm of Figure 2. As described in section 3, node 

i starts the process of scattering an election message. 

That is it begins a diffusing computation by sending an 

Election message to all of its immediate neighbors, 

informing them the starting of an election process for a 

new leader. At triggering a new election, node i sets its 

variable status to “Election” to indicate that it is in the 

mode of an election. In the election mode, node i waits 

until it hears the Ack messages from all the connected 

nodes to which it sends an election message. The list wli 

is, therefore initialized to Ni, i’s current neighbors. It is 

denoted in line 16-20 of Figure 2.

2) Detecting all Nodes connected Networks: Node j, 

upon receiving an election message from i, sends an Ack 

message piggy backed with its neighbors id and weight to 

the node i and propagates Election messages to its own 

neighbors in the set nj. Node i, upon receiving an Ack 

message from node j, puts it into the set of confirmed 

node list cli and inserts into the waiting list wli the piggy 

backed neighbors which are in ni. Therefore, node i 

knows that all nodes connected to network are detected 

when the cli is empty. It is denoted in line 22-27 of 

Figure 2. 

3) Decide New Leader: When the waiting list wli is 

empty, node i knows that it received the Ack messages 

from all connected nodes and it decides a new leader 

based on the nodes weight among the set of confirmed 

node list cli that consists of the acknowledged nodes. The 

exact process to decide new leader is described in line 

20 and 28-30 of Figure 2. As described in line 17-18 of 

Fig. 2, after hearing all Ack messages from the nodes in 

the waiting list wli, node i announce the new leader to 

other nodes and other nodes received the leader 

messages from node i set its variable ldr to the new 

leader’s id by which they know who the current leader is. 

4) Handling Multiple, Concurrent Computations: It is 

obvious that more than one node can concurrently detect 

leader’s departure and each of them can initiate diffusing 

computations independently leading to concurrent 

diffusing computations. Since each of these computations 

has the same goal, i.e. to elect a new maximum identity 

leader, we need to minimize this duplication of effort. 

Furthermore, the outcome of election is not affected by 

the identity of the node that initiated the computation and 

a node has to unnecessarily maintain a large amount of 

state if it participates in multiple diffusing computations at 

the same time. We, therefore, handle multiple, concurrent 

diffusing computations by requiring that each node 

participate in only a single diffusing computation at any 

given time. In order to achieve this, each diffusing 

computation is assigned, what we call, a computation- 

index. This computation-index is a pair, viz. <num, id>, 

where id represents the identifier of the node which 

initiated that computation and num is integer, which is 

described below. 

Definition: <num1, id1> > <num2, id2> <==> ((num1 > 

num2) ∨ ((num1 = num2) ∧ (id1> id2)))

A diffusing computation A is said to have higher 

priority than another diffusing computation B iff : 

computation-indexA > computation-indexB.

When a node participating in a diffusing computation 

hears another computation with a higher priority, then the 

node stop participating any further its current computation 

in favor of the higher priority computation. It is described 

at line 23-26 and 34-37 of Figure 2.

5) Handling Node Partitions:  Once node j receives an 

Election messages from node i, it must sends the Ack 

message to the node. But because of node mobility, it 

may happen that node j, which should yet report an Ack 

message to node i, gets disconnected from it. Node i must 

detect this event, since otherwise it will never report an 

Ack message to node i and therefore, no leader will be 

elected. In this case, node i send an Election message to 

the node j again and wait an Ack message for a certain 

timeout period. If node i does not received Ack message 

from the node for those period, then it removes the node 

from the list wli since the node gets disconnected or 

crashes. It is described at line 23-26 and 34-37 of Fig. 2.
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V. Proof of Correctness

The specification for leader election is consisted of two 

parts. One is safety and the other is liveness. To verify 

the correctness of leader election algorithm, the algorithm 

should be satisfied with both of safety and liveness 

properties. The safety requirement asserts that all the 

nodes connected the system never disagree on the leader 

when the nodes are in a state of normal operation. The 

liveness requirement asserts that all the nodes should 

eventually progress to be in a sate of normal operation in 

which all nodes connected to the system agree to the 

only one leader. As described in Fig 2, each node of 

system has a local variable ldr indicating its leader. Since 

it is impossible to make all nodes change their local 

variable ldr simultaneously, each node uses a variable 

status to reserve the status of system during the process 

changing their leader.

If status equals Norm, the node is normal mode of 

operation and the value of ldr is significant; if status has 

any other value, the node is in a process of a new 

leader’s being elected. We require those nodes to agree 

to a leader only among nodes whose status is Norm. We 

use subscripts to distinguish local variables of different 

nodes; for example, ldri and statusi are local variables for 

node i. 

The safety property of the system with n nodes is 

specified using those local variables. At all times, for all 

operational nodes i and j, if statusi = Norm and statusj = 

Norm, then ldri = ldrjj. Let’s specify the safety property 

formally as  a following formula Safety_LE1.

Safety_LE1: (∀i,j : 1 ≤ i,j ≤ n : (statusi = Norm ∧ 

statusj = Norm ) => (ldri = ldrj))

The liveness requires that the system eventually 

progress to a stable state in which the leader is 

operational and all operational nodes are in the normal 

state in which they have its status variable with Norm. 

Such a state is characterized by using the predicate 

ldrElected, defined as below.

    Definition: ldrElected ≡ (∀i : 1 ≤ i ≤ n : ldri = j ∧ 

(statusi=Norm)))

   Repeated failure and disconnection of nodes will 

prevent the system from entering the stable state. If 

there is a period such that there are no more failure and 

disconnection, the liveness property with ldrElected 

means that a state unsatisfied with ldrElected eventually 

(◇) enter to the state satisfying ldrElected. Let us define 

this formally as a formula Liveness_LE2.

    Liveness_LE2:  ￢ldrElected => ◇ldrElected

Liveness_LE2 means that for a given system, there 

exists a constant c such that if no failures or 

disconnections occur for a period of at least c, then by 

end of that period, the system reaches a state satisfying 

ldrElected. Furthermore, the system remains in that state 

as long as no failures or disconnections occur.

Proof of Safety_LE1 (Proof by contradiction). Let’s 

assume following formula, which is the case that there 

exist two nodes i, j on the system whose states are Norm 

and have different leaders.   

(statusi=Norm∧statusj=Norm) ∧ (ldri=i∧ldrj=j)∧(i ≠ j)  

This formula is to be true, at least two nodes in the 

systems, node i and j, should have detected the leader’s 

failure or disconnection and entered into the “Elect” mode 

respectively when the leader had been crashed or 

disconnected. Each of nodes i and j should choose itself 

as a most-valued node respectively in order to declare 

itself as a leader. But in each election round, only one 

node has the most value and it would be selected as a 

leader. Thus it is contradiction. □

Proof of Liveness_LE2 (Proof by contra diction) a 

non-progress means that the new leader is not elected 

forever even though there is no leader; therefore, no 

leader messages must be sent to all nodes. Let us assume 

that the leader has failed. Because the number of nodes 

is finite and at least one node is alive, there must be at 

least one process that detected the leader’s disconnection 

and started the election procedure. Eventually the node 

receives the Ack messages from all other nodes and 

decides most-valued node as a new leader. Therefore, it 

is contradiction. 

VI. Conclusions

In this paper, we proposed an asynchronous, 

distributed leader election algorithm for mobile, ad hoc 

networks and showed it to be correct. We formally 

specified the property of our leader election algorithm 

using temporal logic. 

We have assumed the ad-hoc network topology is 

dynamically changing and nodes are frequently connected 
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and disconnected over the networks. With this approach, 

the leader election specification states explicitly that 

progress and safety cannot always be guaranteed. In 

practice, our requirement for progress is that there exists 

a constant c such that if connection or disconnections 

occur for a period of at least c, then by end of that 

period, the system reaches a state satisfying a leader 

elected. Furthermore, the system remains in that state as 

long as no failures or disconnections occur.

In fact, if the rate of perceived a leader failures in the 

system is lower than the time it takes the protocol to 

make progress and accept a new leader, then it is 

possible for the algorithm to make progress every time 

there is a leader failure in the system. 

In real world systems, where process crashes actually 

lead a connected cluster of processes to share the same 

connectivity view of the network, convergence on a new 

leader can be easily reached in practice. However, the 

algorithm should work correctly even in the case of 

unidirectional links, provided that there is symmetric 

connectivity between nodes. We are currently working on 

the proof of correctness in the case of unidirectional 

links. We are also investigating on how our election 

algorithm can be adapted to perform clustering in 

wireless, ad hoc networks.
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