
Journal of The Korea Society of Computer and Information

Vol. 21 No. 8, pp. 41-48, August 2016

www.ksci.re.kr

http://dx.doi.org/10.9708/jksci.2016.21.8.041

The Design of an Election Protocol based on Mobile Ad-hoc Network
Environment

Sung-Hoon Park*, Yeong-Mok Kim**, Su-Chang Yoo****

Abstract

In this paper, we propose an election protocol based on mobile ad-hoc network. In distributed

systems, a group of computer should continue to do cooperation in order to finish some jobs. In such

a system, an election protocol is especially practical and important elements to provide processes in

a group with a consistent common knowledge about the membership of the group. Whenever a

membership change occurs, processes should agree on which of them should do to accomplish an

unfinished job or begins a new job. The problem of electing a leader is very same with the agreeing

common predicate in a distributed system such as the consensus problem. Based on the termination

detection protocol that is traditional one in asynchronous distributed systems, we present the new

election protocol in distributed systems that are based on MANET, i.e. mobile ad hoc network.

▸ Keyword : Synchronous Distributed Systems, Leader Election, Fault Tolerance, Mobile Ad Hoc Network.

I. Introduction

In distributed systems, a group of computer should

continue to do cooperation in order to finish some jobs.

The election protocol is especially helpful tools since it is

closely related to group communication [1], which (among

other uses) provides a powerful basis for implementing

active replications. Whenever a membership change

occurs, processes can consent to which of them should

do to finish a waiting job or begin a new job. The problem

of constructing a stable election protocol is very same

with the one of getting common knowledge in a

synchronous distributed system such as the consensus

problem [1].

The Election problem [1] is defined as that a unique

coordinator be elected from a given group of processes.

Many research has been widely done so far based on

only wired network environment in the research

community [2,3,4,5,6,7].

Because many distributed protocols need an election

protocol to build fault tolerant distributed systems.

However, to our knowledge, there is a few work that has

been devoted to this problem in a mobile ad hoc network

environment.

When nodes are moving, based on topology change

nodes would dynamically join and leave the mobile ad hoc

network. In such mobile ad hoc networks, leader election

can arise more frequently and having it a particularly

critical element of fault tolerant distributed system

operation.

Mobile ad hoc systems are more often subject to

environmental adversities which can cause loss of

messages or data [8]. In particular, a mobile node can fail

∙First Author Sung-Hoon Park, Corresponding Author Sung-Hoon Park

*Sung-Hoon Park (spark@cbnu.ac.kr), Dept. of Computer Engineering, Chungbuk National Univ.

**Yeong-Mok Kim (yeongmokkim@gmail.com), Dept. of Computer Engineering, Chungbuk National Univ.

***Su-Chang Yoo (izibt@nate.com), Dept. of Computer Engineering, Chungbuk National Univ.

∙Received: 2016. 06. 20, Revised: 2016. 07. 06, Accepted: 2015. 07. 21.

∙This paper was supported by the research grant of the Chungbuk National University in 2014.

42 Journal of The Korea Society of Computer and Information

or disconnect from the rest of the network. Designing

fault tolerant distributed systems in such an MANET

environment is a difficult and complex effort. Leader

election protocols for MANET have been proposed in

[9,10]. In this paper, we are focused on an

extrema-finding algorithm, because we believe it is

desirable to elect a leader with some system-related

attributes such as maximum battery life or maximum

computation power. The algorithms in [9] are not

extrema-finding algorithm and it cannot be extended to

perform extrema finding. Although, extrema-finding

leader election algorithms for mobile ad hoc networks

have been proposed in [10], these algorithms are

unrealistic as they require nodes to meet and exchange

information in order to elect a leader and therefore they

are not well-suited to the applications discussed earlier.

Several clustering algorithms have been proposed for

mobile networks (e.g. [11], [12]), but these algorithms

elect cluster-heads only within their single hop

neighborhood.

The aim of this paper is to propose a solution to the

election problem in a specific ad hoc mobile computing

environment. This solution is based on the group

membership detection algorithm that is a classical one for

synchronous distributed systems. The rest of this paper

is organized as follows: Section 2 describes the mobile

system model we use. In Section 3, a solution to the

election problem in a conventional synchronous system is

presented. A protocol to solve the election problem in a

mobile ad hoc computing system is presented in Section

4. We conclude in Section 5.

II. System Model, Constraints and

Assumptions

In Section 3, a solution to the election problem in a

conventional synchronous system is presented. A protocol

to solve the election problem in a mobile ad hoc

computing system is presented in Section 4. We conclude

in Section 5.

Before developing a leader election algorithm for

ad-hoc computing environments, we first define our

system model based upon assumptions and goals. We

model an ad hoc network as an undirected graph, i.e., G =

(V, E), where vertices V correspond to set of mobile

nodes {1, 2,….,n} (n >1) with unique identifiers and

edges E between a pair of nodes represent the fact that

the two nodes are within each other’s transmission radii

and, hence, can directly communicate with one another

that changes over time as nodes move. Each process i

has a variable Ni, which indicates the neighboring nodes,

with that i can directly communicate the neighboring

nodes. We assume that every communication channel is

bidirectional; j∈ Ni iff i∈ Nj. More precisely, in the

network G = (V, E), we can define E such that for all i∈

V, (i, j) ∈ E if and only if i∈ Nj. The graph can become

disconnected if the network is partitioned due to node

movement. Because the nodes may changes their location,

Ni may be dynamically changed and so may G

accordingly. We make the following assumptions about

the nodes and system architecture:

- Each node has a weight value Wi associated with it.

The value of a node indicates its “priority” as a leader of

the system and can be calculated upon some criteria such

as the node’s battery power, the position where the

node’s distance from other nodes is minimal,

computational capabilities etc.

- All nodes have unique identifiers. They are used to

identify participants during the election process. Node IDs

are used to break ties among nodes which have the same

value.

- Links are bidirectional and FIFO, i.e. messages are

delivered in order over a link between two neighbors.

- Node mobility may result in arbitrary topology

changes including network partitioning and merging.

Furthermore, nodes can crash arbitrarily at any time and

can come back up again at any time.

- A message delivery is guaranteed only when the

sender and the receiver remain connected (not

partitioned) for the entire duration of message transfer.

Each node has a sufficiently large receive buffer to avoid

buffer overflow at any point in its lifetime.

The objective of our leader election algorithm is to

ensure that after a finite number of topology changes,

eventually each node i has a leader which is the

most-valued-node from among all nodes in the connected

component to which i belongs.

The Design of an Election Protocol based on Mobile Ad-hoc Network Environment 43

III. Leader Election Algorithm in a Static

Network

In this section, we describe a leader election algorithm

based on group membership detection algorithm, simply

GMDA, by diffusing computations. In later sections, we

will discuss in detail how this algorithm can be adapted to

a mobile setting.

3.1 Leader Election in a Static Network

We first describe our election algorithm in the

environment of a static network, where we assume that

nodes and links never fail. The algorithm consists of two

phases operated at the node that initiates the election

algorithm. 1) Scattering phase- it operates by first

“scattering the election message” and 2) Gathering

phase- it operates by then “gathering the id of each

node” that is connected to the static networks. We refer

to this computation-initiating node as the source node. As

we will see, after gathering all nodes’ ids completely, the

source node will have the information enough to

determine the most-valued-node and will then broadcast

its identity to the rest of the nodes in the network. The

algorithm uses three messages, i.e., Election, Ack and

Leader.

1) Scattering phase. Election messages are used to

initiate the election by “scattering” the election message.

When election is triggered at a source node s (for

instance, upon crash or departure of its current leader),

the node makes a waiting list wl and a received list rl and

begins a diffusing computation by sending an Election

message to all of its immediate neighbors. Initially the

waiting list consists of only its immediate neighboring

node’s ids and the received list consists of an empty list.

Every node i other than the source propagates the

Election message to all of its neighboring nodes except

the node from which it first received an Election

message.

When node i receives an Election message from the

neighboring node for the first time, it immediately sends

the Ack message to the source node. The Ack message

sent by node i to the source node contains the ids of all

its neighboring nodes that is needed for the source node

to elect a leader.

2) Gathering phase. When the source node receives the

Ack message from the node j, it removes j from the

waiting list and puts j into the received list and

immediately checks one by one the every node id

contained in the Ack message. If there is the any id in the

Ack which has already been acknowledged, i.e. that

means it is in the received list, it is discarded. Otherwise,

it is put into the waiting list of source node and the

source node waits the Ack message from it. The waiting

list is growing and shrinking repeatedly based on the

received Ack messages, but the received list steadily

growing by receiving the Ack messages. But eventually

the waiting list could be empty and the received list could

include all ids of nodes connected to the networks when

the source node received the Ack messages from all

other nodes. Hence the source node eventually has

sufficient information to determine the most-valued-node

in the received list, because the waiting list could be

eventually empty and it means that the source node has

received the Ack messages from all the nodes.

3) Completing Phase. Once the source node has

received Acks from all other nodes, it determines the

most-valued-node as a leader among the received list

and broadcasts a Leader message to all other nodes

announcing the identity of the leader. We illustrate a

sample execution of the algorithm. We describe the

algorithm in a somewhat synchronous manner even

though all the activities are in fact asynchronous.

Consider the network shown in Figure 1(a). In this figure,

and for the rest of the paper, thin arrows indicate the

direction of flow of Election messages and dotted arrows

indicate the direction of flow of Ack messages to the

source node. The number adjacent to each node in Figure

1(a) represents its value. As shown in Figure 1, node A is

a source node that initializes wla and rlb with {B,C} and

{A} respectively and starts a diffusing computation by

sending out Election messages (denoted as “E” in the

figure) to its immediate neighbors, viz. nodes B and C,

shown in Figure 1(a).

As indicated in Figure 1(b), nodes B and C in turn

propagate the Election message to its immediate

neighbors only except the source node and send the Ack

message with neighboring node list to the source node A.

Hence B and C also send Election messages to one

another. But the Election messages are not acknowledged

to the source node since nodes B and C have already

received Election messages from the source node

respectively. The information about neighboring node is

piggybacked upon the Ack message sent by each node.

44 Journal of The Korea Society of Computer and Information

Upon received Ack messages from B and C, node A

updates wla = { B,C }, rlb = { A } with the neighboring

node information piggybacked on the Ack messages.

In Figure 1(c), the node D and F also send the Ack messages

to the sources node when they received the Election messages

from the B and C respectively. Each of these Ack messages

contains the identities of the neighbor and its actual value.

Eventually, the source A hears all acknowledgments from all of

other nodes except itself in Figure 1(d) and then decides the

most-valued node among them and broadcasts the identity of the

leader, D, via the Ldr message shown in Figure 1(d).

Fig. 1. An execution of leader election algorithm based on

the group membership detection algorithm. Arrows on the

edges indicate transmitted election messages, while dotted

arrows parallel to the edges indicate Ack messages.

IV. Leader Election in a Mobile, Ad

Hoc Network

In this section, we redesign the leader election

algorithm presented above and describe the operation of

the leader election algorithm in the context of a mobile,

ad hoc network. In the previous section, we described the

leader election algorithm in a static network. But with the

node mobility, node crashes, link failures, network

partitions and merging of partitions, the simple LE

algorithm presented in the previous section is inadequate.

Furthermore, we assumed in the previous section that

only single node knows as an external input the leader

crash or failure, departure and it initiates the election

protocol. In reality, such an assumption is inadequate,

because many nodes concurrently can receive such inputs

and each of them starts a leader election protocol

independently. It results from the lack of knowledge of

other computations that have been started by other

nodes.

We assume that the value of the node is the same as

its identifier. This assumption has been made only for

simplicity of presentation without loss of generality.

Before we formally specify our algorithm and describe it

in detail, we briefly introduce notation used in our

algorithm specification and the execution model.

1. numi := 0; ldri := null;
2. statusi : = Norm; one of states in {Norm, Elect,

Wait}
3. ni := {set of all neighboring processes};
4. cli := { i }; wli := { };
5. e_num : = null; k : = null;
6. On statusi = Norm :
7. if no_signal from ldri then
8. statusi := Elect;
9. mumi := mumi +1;
10. send election(mumi) to each process of ni;

end-if
11. Upon received election(m) from process j:
12. statusi= Wait;
13. e_num : = m; k : = j;
14. send election(m) to each process of ni except j:
15. send ack(ni) to processes j;
16. On statusi = Elect :
17. Upon received ack (q) from process j :
18. wli : = wli – { j }
19. cli := cli∪{ j };
20. wli := wli∪{ q - { q ∩ cli } }
21. if wli = empty then checklist(); end-if
22. Upon received election(r) from process j :
23. if { (mumi, i) < (r, j) } then
24. send election(r) to each process of ni;
25. send ack(ni) to processes j;
26. e_num : = r; k : = j;
27. statusi := Wait; end-if
28. On status = Wait :
29. Upon received leader(t) from process j :
30. ldri := t ;
31. send leader(ldri) to each process of ni except j;
32. statusi := Norm;
33. Upon received election(r) from process j :
34. if { (e_mum, k) < (r, j) } then
35. send election(r) to each process of ni ;
36. send ack(ni) to processes j;
37. e_num : = r; k : = j;
38. end-if
39. Checklist() :
40. ldri := max (cli)
41. send leader (ldri) to each process of ni ;
42. statusi := Norm;

Fig. 2. A leader election algorithm in mobile ad hoc

computing environments based on the group membership

detection algorithm.

The Design of an Election Protocol based on Mobile Ad-hoc Network Environment 45

4.1 Algorithm Performed By the Nodes

In this section, we describe the exact algorithm

performed by an arbitrary node i. The exact algorithm is

shown in Figure 2. The Leader Election module on every

node loops forever and on each iteration checks if any of

the actions in the algorithm specification are enabled,

executing at least one enabled action on every loop

iteration. The bootstrapping of election module involves

assigning values variables in line 1-5 of fig. 2 as

specified in the initialization part of the Leader Election

module.

1) Initiate Election: The leader of a connected

component periodically sends a heartbeat messages to

other nodes. The election process is triggered in node i

when it does not receive the messages from the leader

due to its departure or crash, as denoted by line 7-8 in

the algorithm of Figure 2. As described in section 3, node

i starts the process of scattering an election message.

That is it begins a diffusing computation by sending an

Election message to all of its immediate neighbors,

informing them the starting of an election process for a

new leader. At triggering a new election, node i sets its

variable status to “Election” to indicate that it is in the

mode of an election. In the election mode, node i waits

until it hears the Ack messages from all the connected

nodes to which it sends an election message. The list wli

is, therefore initialized to Ni, i’s current neighbors. It is

denoted in line 16-20 of Figure 2.

2) Detecting all Nodes connected Networks: Node j,

upon receiving an election message from i, sends an Ack

message piggy backed with its neighbors id and weight to

the node i and propagates Election messages to its own

neighbors in the set nj. Node i, upon receiving an Ack

message from node j, puts it into the set of confirmed

node list cli and inserts into the waiting list wli the piggy

backed neighbors which are in ni. Therefore, node i

knows that all nodes connected to network are detected

when the cli is empty. It is denoted in line 22-27 of

Figure 2.

3) Decide New Leader: When the waiting list wli is

empty, node i knows that it received the Ack messages

from all connected nodes and it decides a new leader

based on the nodes weight among the set of confirmed

node list cli that consists of the acknowledged nodes. The

exact process to decide new leader is described in line

20 and 28-30 of Figure 2. As described in line 17-18 of

Fig. 2, after hearing all Ack messages from the nodes in

the waiting list wli, node i announce the new leader to

other nodes and other nodes received the leader

messages from node i set its variable ldr to the new

leader’s id by which they know who the current leader is.

4) Handling Multiple, Concurrent Computations: It is

obvious that more than one node can concurrently detect

leader’s departure and each of them can initiate diffusing

computations independently leading to concurrent

diffusing computations. Since each of these computations

has the same goal, i.e. to elect a new maximum identity

leader, we need to minimize this duplication of effort.

Furthermore, the outcome of election is not affected by

the identity of the node that initiated the computation and

a node has to unnecessarily maintain a large amount of

state if it participates in multiple diffusing computations at

the same time. We, therefore, handle multiple, concurrent

diffusing computations by requiring that each node

participate in only a single diffusing computation at any

given time. In order to achieve this, each diffusing

computation is assigned, what we call, a computation-

index. This computation-index is a pair, viz. <num, id>,

where id represents the identifier of the node which

initiated that computation and num is integer, which is

described below.

Definition: <num1, id1> > <num2, id2> <==> ((num1 >

num2) ∨ ((num1 = num2) ∧ (id1> id2)))

A diffusing computation A is said to have higher

priority than another diffusing computation B iff :

computation-indexA > computation-indexB.

When a node participating in a diffusing computation

hears another computation with a higher priority, then the

node stop participating any further its current computation

in favor of the higher priority computation. It is described

at line 23-26 and 34-37 of Figure 2.

5) Handling Node Partitions: Once node j receives an

Election messages from node i, it must sends the Ack

message to the node. But because of node mobility, it

may happen that node j, which should yet report an Ack

message to node i, gets disconnected from it. Node i must

detect this event, since otherwise it will never report an

Ack message to node i and therefore, no leader will be

elected. In this case, node i send an Election message to

the node j again and wait an Ack message for a certain

timeout period. If node i does not received Ack message

from the node for those period, then it removes the node

from the list wli since the node gets disconnected or

crashes. It is described at line 23-26 and 34-37 of Fig. 2.

46 Journal of The Korea Society of Computer and Information

V. Proof of Correctness

The specification for leader election is consisted of two

parts. One is safety and the other is liveness. To verify

the correctness of leader election algorithm, the algorithm

should be satisfied with both of safety and liveness

properties. The safety requirement asserts that all the

nodes connected the system never disagree on the leader

when the nodes are in a state of normal operation. The

liveness requirement asserts that all the nodes should

eventually progress to be in a sate of normal operation in

which all nodes connected to the system agree to the

only one leader. As described in Fig 2, each node of

system has a local variable ldr indicating its leader. Since

it is impossible to make all nodes change their local

variable ldr simultaneously, each node uses a variable

status to reserve the status of system during the process

changing their leader.

If status equals Norm, the node is normal mode of

operation and the value of ldr is significant; if status has

any other value, the node is in a process of a new

leader’s being elected. We require those nodes to agree

to a leader only among nodes whose status is Norm. We

use subscripts to distinguish local variables of different

nodes; for example, ldri and statusi are local variables for

node i.

The safety property of the system with n nodes is

specified using those local variables. At all times, for all

operational nodes i and j, if statusi = Norm and statusj =

Norm, then ldri = ldrjj. Let’s specify the safety property

formally as a following formula Safety_LE1.

Safety_LE1: (∀i,j : 1 ≤ i,j ≤ n : (statusi = Norm ∧

statusj = Norm) => (ldri = ldrj))

The liveness requires that the system eventually

progress to a stable state in which the leader is

operational and all operational nodes are in the normal

state in which they have its status variable with Norm.

Such a state is characterized by using the predicate

ldrElected, defined as below.

 Definition: ldrElected ≡ (∀i : 1 ≤ i ≤ n : ldri = j ∧

(statusi=Norm)))

 Repeated failure and disconnection of nodes will

prevent the system from entering the stable state. If

there is a period such that there are no more failure and

disconnection, the liveness property with ldrElected

means that a state unsatisfied with ldrElected eventually

(◇) enter to the state satisfying ldrElected. Let us define

this formally as a formula Liveness_LE2.

 Liveness_LE2: ￢ldrElected => ◇ldrElected

Liveness_LE2 means that for a given system, there

exists a constant c such that if no failures or

disconnections occur for a period of at least c, then by

end of that period, the system reaches a state satisfying

ldrElected. Furthermore, the system remains in that state

as long as no failures or disconnections occur.

Proof of Safety_LE1 (Proof by contradiction). Let’s

assume following formula, which is the case that there

exist two nodes i, j on the system whose states are Norm

and have different leaders.

(statusi=Norm∧statusj=Norm) ∧ (ldri=i∧ldrj=j)∧(i ≠ j)

This formula is to be true, at least two nodes in the

systems, node i and j, should have detected the leader’s

failure or disconnection and entered into the “Elect” mode

respectively when the leader had been crashed or

disconnected. Each of nodes i and j should choose itself

as a most-valued node respectively in order to declare

itself as a leader. But in each election round, only one

node has the most value and it would be selected as a

leader. Thus it is contradiction. □

Proof of Liveness_LE2 (Proof by contra diction) a

non-progress means that the new leader is not elected

forever even though there is no leader; therefore, no

leader messages must be sent to all nodes. Let us assume

that the leader has failed. Because the number of nodes

is finite and at least one node is alive, there must be at

least one process that detected the leader’s disconnection

and started the election procedure. Eventually the node

receives the Ack messages from all other nodes and

decides most-valued node as a new leader. Therefore, it

is contradiction.

VI. Conclusions

In this paper, we proposed an asynchronous,

distributed leader election algorithm for mobile, ad hoc

networks and showed it to be correct. We formally

specified the property of our leader election algorithm

using temporal logic.

We have assumed the ad-hoc network topology is

dynamically changing and nodes are frequently connected

The Design of an Election Protocol based on Mobile Ad-hoc Network Environment 47

and disconnected over the networks. With this approach,

the leader election specification states explicitly that

progress and safety cannot always be guaranteed. In

practice, our requirement for progress is that there exists

a constant c such that if connection or disconnections

occur for a period of at least c, then by end of that

period, the system reaches a state satisfying a leader

elected. Furthermore, the system remains in that state as

long as no failures or disconnections occur.

In fact, if the rate of perceived a leader failures in the

system is lower than the time it takes the protocol to

make progress and accept a new leader, then it is

possible for the algorithm to make progress every time

there is a leader failure in the system.

In real world systems, where process crashes actually

lead a connected cluster of processes to share the same

connectivity view of the network, convergence on a new

leader can be easily reached in practice. However, the

algorithm should work correctly even in the case of

unidirectional links, provided that there is symmetric

connectivity between nodes. We are currently working on

the proof of correctness in the case of unidirectional

links. We are also investigating on how our election

algorithm can be adapted to perform clustering in

wireless, ad hoc networks.

REFERENCES

[1] G. LeLann, Distributed systems–towards a formal

approach, in Information Processing 77, B. Gilchrist,

Ed. North–Holland, 1977.

[2] H. Garcia-Molian, Elections in a distributed

computing system, IEEE Transactions on Computers,

vol. C-31, no. 1, pp. 49-59, April 1982.

[3] N. Mohammed, H. Otrok, W. Lingyu, M. Debbabi,

and P. Bhattacharya, Mechanism Design-Based

Secure Leader Election Model for Intrusion

Detection in MANET, IEEE Transactions on

Dependable and Secure Computing, vol.8, no.1,

pp.89-103, March 2011

[4] R. Ali, S. Lor, R. Benouaer, M. Rio, Cooperative

Leader Election Algorithm for Master/Slave Mobile

Ad Hoc Network, 2nd IFIP Wireless Days (WD),

Paris, pp. 1-5, 15-17 December 2009.

[5] Masum, S. M., Ali, A. A., Bhuiyan, M. T. I.:

Asynchronous Leader Election in Mobile Ad Hoc

Networks. AINA 06, 827–831, 2006.

[6] S. Lee, M. Rahman, and C. Kim, A Leader Election

Algorithm Within Candidates on Ad Hoc Mobile

Networks, Embedded Software and Systems, Lecture

Notes in Computer Science, Vol. 4523, pp: 728-738,

Springer Berlin / Heidelberg 2007.

[7] M. Lima, A. dos Santos, and G. Pujolle, A Survey of

Survivability in Mobile Ad Hoc Networks, IEEE

Communications Surveys & Tutorials, 11 (1): 66-75,

First Quarter 2009.

[8] Pradhan D. K., Krichna P. and Vaidya N. H.,

Recoverable mobile environments: Design and

tradeoff analysis. FTCS-26, June 1996.

[9] N. Malpani, J. Welch and N. Vaidya. Leader Election

Algorithms for Mobile AdHoc Networks. InFourth

International Workshop on Discrete Algorithms and

Methods for Mobile Computing and Communications,

Boston, MA, August 2000.

[10]K. Hatzis, G. Pentaris, P. Spirakis, V. Tampakas and

R. Tan. Fundamental Control Algorithms in Mobile

Networks. InProc. of 11th ACM SPAA, pages

251-260, March 1999.

[11]C. Lin and M. Gerla. Adaptive Clustering for Mobile

Wireless Networks. In IEEE Journal on Selected

Areas in Communications, 15(7):1265-75, 1997.

[12]P. Basu, N. Khan and T. Little. A Mobility based

metric for clustering in mobile ad hoc networks. In

International Workshop on Wireless Networks and

Mobile Computing, April 2001.

Authors

Sung-Hoon Park received the B.S
degree in Dept. of Statics and
Economics from Korea University,
Korea, in 1982 and Ph.D degree
at Computer Science from
Indiana University, USA in 1996.

He is currently full professor in Dept. of Computer
Engineering, Chungbuk National University. He is
interested in Theory of Computation, Distributed
and Mobile Computing.

48 Journal of The Korea Society of Computer and Information

Young-Mok Kim received B.S
degree in Dept. of Management
from Korea University, Korea, in
1983 and M.S degree in Dept. of
Computer Engineering, Chungbuk
National University, Korea, in 2012.

He is currently Ph.D student in Dept. of Computer
Engineering, Chungbuk National University. He is
interested in Theory of Computation, Distributed
and Mobile Computing.

Su-Chang Yoo received B.S degree
in Dept. of Computer Engineering
from Chungbuk National
University, Korea, in 2012 and M.S
degree in Dept. of Computer
Engineering, Chungbuk National
University, Korea, in 2014.

He is currently Ph.D student in Dept. of Computer
Engineering, Chungbuk National University. He is
interested in N tiered architecture, Distributed and
health-care Programming.

