DOI QR코드

DOI QR Code

Numerical analysis of the morphological changes by sediment supply at the downstream channel of Youngju dam

댐 하류하천에서 유사공급에 의한 하도의 지형변화 수치모의 분석(영주댐을 중심으로)

  • Kang, Ki-Ho (K-water Yeongju Dam Construction Office) ;
  • Jang, Chnag-Lae (Dept. of Civil Engineering, Korea National University of Transportation) ;
  • Lee, Gi Ha (Dept. of Civil Engineering, Kyungpook National University) ;
  • Jung, Kwansue (Dept. of Civil Engineering, Chungnam National University)
  • Received : 2016.05.13
  • Accepted : 2016.07.08
  • Published : 2016.08.31

Abstract

In this study, the effects of sediment supply on the downstream of a large dam are investigated using a numerical model. The model simulation shows a good agreement with laboratory experiment results of sediment transport and diffusion from sediment pulses. The water surface changes from the various sediment bed elevations are also simulated using the model. The site which has a relatively stiff bed slope and meandering of a channel is selected as an appropriate location for sediment supply because of its shear stress enough to supply the sediment downstream. The model simulation shows the decrease of channel bed elevation through the simulation period with time. The well-deposition of sediment supplied from the downstream of dam is found in the location where the flow rate is relatively low. A bed relief index is increased with time and it is relatively greater in downstream compared to upstream. The channel bed variability increases as flow rate increases with a greater bed relief index. The results of this study demonstrate the importance of increasing water discharge of a large dam to increase the dynamic of channel bed and thus to enhance the efficiency of channel bed restoration by sediment supply.

본 연구에서는 영주댐 하류하천에서 유사공급에 의한 하도의 지형변화와 그 효과를 수치실험을 통하여 분석하였다. 본 수치모형의 모의 결과는 실내실험에서 보여준 토사더미의 이송과 확산과정과 잘 일치하였다. 초기에 토사가 공급된 구간에서 수면이 불연속적으로 형성되는 현상이 발생하지만, 시간이 증가함에 따라 하상고가 저하되면서 완만한 수면형을 형성하였다. 유사공급을 효과적으로 수행하기 위하여 댐 직하류에서 여울이 형성된 만곡부를 유사공급 위치로 선정하였다. 시간이 증가함에 따라 공급된 유사는 하류로 쓸려 내려가고 하상고는 저하되었으며, 유속이 감소되는 하류지점에서 퇴적되었다. 시간이 증가함에 따라, 하상고의 변화가 증가하고, 상류보다는 하류에서 크게 변화하였다. 유량이 증가함에 따라 횡방향 하상고 변화를 나타내는 하상기복지수는 증가하였으며, 하도의 역동성과 유사공급 효과가 큰 것을 알 수 있다.

Keywords

References

  1. Ashida, K., and Michue, M. (1972). Study on hydraulic resistance and bedload transport rate in alluvial streams, Proc., JSCE, 206, pp. 59-69.
  2. Bunte, K. (2004). "Gravel mitigation and augmentation below hydroelectric dams: a geomorphological perspective." Report to the Stream Systems Technology Center, USDA, Forest Service, Rocky Mountain Research Station, Fort Collins, CO.
  3. Cui, Y., Parker, G., Lisle, T.E., Gott, J., Hansler-Ball, M.E., Pizzuto, J.E., Allmendinger, N., and Reed, J.M. (2003). "Sediment pulses in mountain rivers: 1. Experiments." Water Resources Research, Vol. 39, No. 9, 1239, doi:10.1029/2002WR001803.
  4. Engelund, F. (1974). "Flow and bed topography in channel beds." J. Hydr. Div., ASCE, Vol. 100, No. 11, pp. 1631-1648.
  5. Gaeuman, D. (2012). "Mitigating downstream effects of dams." In Gravel-Bed Rivers: Processes, Tools, Environments, Church M, Biron P, Roy AG(eds), John Wiley and Sons: Chichester, 563.
  6. Gaeuman, D. (2014). High-flow gravel injection for constructing designed in-channel features, River Research and Applications: Vol. 30, pp. 685-706. https://doi.org/10.1002/rra.2662
  7. Hoey, T.B., and Sutherland, A.J. (1991). "Channel morphology and bedload pulses in braided rivers: A laboratory study." Earth Surf. Process. Landforms. Vol. 16, pp. 447-462. https://doi.org/10.1002/esp.3290160506
  8. Im, D., Kang, H., Kim, K-H., and Choi, S.-U. (2011). "Changes of river morphology and physical fish habitat following weir removal." Ecological Engineering, Vol. 37, pp. 883-892. https://doi.org/10.1016/j.ecoleng.2011.01.005
  9. Jang, C.-L., and Shimizu, Y. (2005). "Numerical simulation of relatively wide, shallow channels with erodible banks." Journal of Hydraulic Engineering, Vol. 131, No. 7, pp. 565-575. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(565)
  10. Jang, C.-L., and Shimizu, Y. (2010). "Numerical simulation of sand bars downstream of Andong Dam." Journal of the Korean Society of Civil Engineers, Vol. 30, No. 4B, pp. 379-388.
  11. Jang, C.-L., and Woo, H. (2009). "Analysis of bed material changes by flushing flow from Daecheong Dam." Journal of Korea Water Resources Association, Vol. 42, No. 10, pp. 845-855. https://doi.org/10.3741/JKWRA.2009.42.10.845
  12. Kondolf, G.M., and Wilcock, P.R. (1996). "The flushing flow problem: Defining and evaluating objectives." Water Resour. Res., Vol. 32, pp. 2589-2599. https://doi.org/10.1029/96WR00898
  13. Kondolf, G.M., and Wolman, M.G. (1993). "The sizes of salmonid spawning gravels." Water Resour. Res., Vol. 29, pp. 2275-2285. https://doi.org/10.1029/93WR00402
  14. Madej, M.A. (2001). "Erosion and sediment delivery following removal of forest roads." Earth Surface Processes and Landforms, Vol. 26, pp. 175-190. https://doi.org/10.1002/1096-9837(200102)26:2<175::AID-ESP174>3.0.CO;2-N
  15. Miwa, H., and Parker, G. (2012). "Numerical simulation of low-flow channel evolution due to sediment augmentation." International Journal of Sediment Research, Vol. 27, pp. 351-361. https://doi.org/10.1016/S1001-6279(12)60040-7
  16. Ock, G., Gaeuman, D., McSloy, J., and Kondolf, G.M. (2015). "Ecological functions of restored gravel bars, the Trinity River, California." Ecological Engineering, Vol. 83, pp. 49-60. https://doi.org/10.1016/j.ecoleng.2015.06.005
  17. Shields, F.D. Jr., Ronald, R. Copeland, R.R., Klingeman, P.C., Doyle, M.W., and Simon, A. (2003). "Design for stream restoration." Journal of Hydraulic Engineering, Vol. 129, No. 8, pp. 575-584. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:8(575)
  18. Shimizu, Y., Takebayash, T., Inoue, T., Hamaki, M., Iwasaki, T., and Nabi, M. (2014). iRic Software: Nays2DH Solver Mannual.
  19. Viparelli, J.G., Gaeuman, D., Wilcock P.R., and Parker, G. (2011). "A model to predict the evolution of a gravel bed river under an imposed cyclic hydrograph and its application to the Trinity River." Water Resour. Res., 47, W02533, doi:10.1029/2010WR009164.
  20. Watanabe, A., Fukuoka, S., Yasutake, Y., and Kawaguchi, H. (2001). "Method for arranging vegetation grions at bends for control of bed variation." Collection of Papers on River Engineering, Vol. 7, pp. 285-290.
  21. Williams, G.P., and Wolman, M.G. (1984). Downstream effects of dams and alluvial rivers, United States Geological Survey Professional Paper, 1286.

Cited by

  1. Analysis on the sediment sluicing efficiency by variation of operation water surface elevation at flood season vol.49, pp.12, 2016, https://doi.org/10.3741/JKWRA.2016.49.12.971