DOI QR코드

DOI QR Code

Liquid-liquid extraction process for gas separation from water in polymeric membrane: Mathematical modeling and simulation

  • Salimi, Nahid (Department of Chemical Engineering, Faculty of Engineering, Arak University) ;
  • Moradi, Sadegh (Department of Chemical Engineering, Faculty of Engineering, Arak University) ;
  • Fakhar, Afsaneh (Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University) ;
  • Razavi, Seyed Mohammad Reza (Young Researchers and Elite Club, South Tehran Branch, Islamic Azad University)
  • Received : 2015.12.12
  • Accepted : 2016.06.25
  • Published : 2016.09.25

Abstract

In this study, application of polypropylene hollow fiber membrane contactors for $CO_2$ removal from water in liquid-liquid extraction (LLE) mode was simulated. For this purpose, a steady state 2D mathematical model was developed. In this model axial and radial diffusion was considered to $CO_2$ permeation through the hollow fibers. $CO_2$ laden water is fed at a constant flow rate into the lumen side, permeated through the pores of membrane and at the end of this process, $CO_2$ solution in the lumen side was extracted by means of aqueous diethanolamine (DEA) and chemical reaction. The simulation results were validated with the experimental data and it was found a good agreement between them, which confirmed the reliability of the proposed model. Both simulation and experimental results confirmed the reduction in the percentage of $CO_2$ removal by increment of feed flow rate.

Keywords

References

  1. Agrahari, G.K., Verma, N. and Bhattacharya, P.K. (2011), "Application of hollow fiber membrane contactor for the removal of carbon dioxide from water under liquid-liquid extraction mode", J. Membr. Sci., 375(1-2), 323-333. https://doi.org/10.1016/j.memsci.2011.03.060
  2. Al-Marzouqi, M.H., El-Naas, M.H., Marzouk, S.A.M., Al-Zarooni, M.A., Abdullatif, N. and Faiz, R. (2008), "Modeling of $CO_2$ absorption in membrane contactors", Sep. Purif. Technol., 59(3), 286-293. https://doi.org/10.1016/j.seppur.2007.06.020
  3. Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960), Transport Phenomena, (2nd Ed.), John Wiley & Sons, New York, NY, USA.
  4. Bishnoi, S. and Rochelle, G.T. (2000), "Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility", Chem. Eng. Sci., 55(22), 5531-5543. https://doi.org/10.1016/S0009-2509(00)00182-2
  5. Bothun, G.D., Knutson, B.L., Strobel, H.J., Nokes, S.E., Brignole, E.A. and Diaz, S. (2003), "Compressed solvents for the extraction of fermentation products within a hollow fiber membrane contactor", J. Supercritic. Fluid., 25(2), 119-134. https://doi.org/10.1016/S0896-8446(02)00093-1
  6. Criscuoli, A., Drioli, E. and Moretti, U. (2003), "Membrane contactors in the beverage industry for controlling the water gas composition", Ann. N.Y. Acad. Sci., 984, 1-16. https://doi.org/10.1111/j.1749-6632.2003.tb05988.x
  7. Fadaei, F., Shirazian, S. and Ashrafizadeh, S.N. (2011), "Mass transfer simulation of solvent extraction in hollow-fiber membrane contactors", Desalination, 275(1-3), 126-132. https://doi.org/10.1016/j.desal.2011.02.039
  8. Fazaeli, R., Razavi, S.M.R., Najafabadi, M.S. and Torkaman, R. (2015), "Computational simulation of $CO_2$ removal from gas mixtures by chemical absorbents in porous membranes", RSC Advances, 5(46), 36787-36797. https://doi.org/10.1039/C5RA02001H
  9. Ghadiri, M., Fakhri, S. and Shirazian, S. (2013), "Modeling and CFD simulation of water desalination using nanoporous membrane contactors", Ind. Eng. Chem. Res., 52(9), 3490-3498. https://doi.org/10.1021/ie400188q
  10. Ghadiri, M., Ghasemi Darehnaei, M., Sabbaghian, S. and Shirazian, S. (2013), "Computational simulation for transport of priority organic pollutants through nanoporous membranes", Chem. Eng. Technol., 36(3), 507-512. https://doi.org/10.1002/ceat.201200513
  11. Happel, J. (1959), "Viscous flow relative to arrays of cylinders", AIChE J., 5(2), 174-177. https://doi.org/10.1002/aic.690050211
  12. Hoff, K.A., Juliussen, O., Falk-Pedersen, O. and Svendsen, H.F. (2004), "Modeling and experimental study of carbon dioxide absorption in aqueous alkanolamine solutions using a membrane contactor", Ind. Eng. Chem. Res., 43(16), 4908-4921. https://doi.org/10.1021/ie034325a
  13. Hope, D., Dawson, J.J.C., Cresser, M.S. and Billett, M.F. (1995), "A method for measuring free $CO_2$ in upland streamwater using headspace analysis", J. Hydrol., 166(1-2), 1-14. https://doi.org/10.1016/0022-1694(94)02628-O
  14. IPCC (2005), IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press, United Nations, New York, NY, USA.
  15. Jun, C.L., Xiang, J.Y. and Dong, H.Y. (2015), "CFD simulations of the fluid flow behavior in a spacer-filled membrane module", Membr. Water Treat., Int. J., 6(6), 513-524. https://doi.org/10.12989/mwt.2015.6.6.513
  16. Keshavarz, P., Fathikalajahi, J. and Ayatollahi, S. (2008), "Analysis of $CO_2$ separation and simulation of a partially wetted hollow fiber membrane contactor", J. Hazard. Mater., 152(3), 1237-1247. https://doi.org/10.1016/j.jhazmat.2007.07.115
  17. Lu, J., Wang, L., Sun, X., Li, J. and Liu, X. (2005), "Absorption of $CO_2$ into aqueous solutions of methyldiethanolamine and activated methyldiethanolamine from a gas mixture in a hollow fiber contactor", Ind. Eng. Chem. Res., 44(24), 9230-9238. https://doi.org/10.1021/ie058023f
  18. Lu, J.G., Zheng, Y.F., Cheng, M.D. and Wang, L.J. (2007), "Effects of activators on mass-transfer enhancement in a hollow fiber contactor using activated alkanolamine solutions", J. Membr. Sci., 289(1-2), 138-149. https://doi.org/10.1016/j.memsci.2006.11.042
  19. Miramini, S.A., Razavi, S.M.R., Ghadiri, M., Mahdavi, S. and Moradi, S. (2013), "CFD simulation of acetone separation from an aqueous solution using supercritical fluid in a hollow-fiber membrane contactor", Chem. Eng. Process.: Process Intensification, 72, 130-136. https://doi.org/10.1016/j.cep.2013.07.005
  20. Mohammadi, M., Marjani, A., Asadollahzadeh, M., Hemmati, A. and Kazemi, S.M. (2016), "Simulation of transport phenomena in porous membrane evaporators using computational fluid dynamics", Membr. Water Treat., Int. J., 7(2), 87-100. https://doi.org/10.12989/mwt.2016.7.2.087
  21. Mondal, M.K., Balsora, H.K. and Varshney, P. (2012), "Progress and trends in $CO_2$ capture/separation technologies: A review", Energy, 46(1), 431-441. https://doi.org/10.1016/j.energy.2012.08.006
  22. Olajire, A.A. (2010), "$CO_2$ capture and separation technologies for end-of-pipe applications - A review", Energy, 35(6), 2610-2628. https://doi.org/10.1016/j.energy.2010.02.030
  23. Paul, S., Ghoshal, A.K. and Mandal, B. (2007), "Removal of $CO_2$ by single and blended aqueous alkanolamine solvents in hollow-fiber membrane contactor: Modeling and simulation", Ind. Eng. Chem. Res., 46(8), 2576-2588. https://doi.org/10.1021/ie061476f
  24. Razavi, S.M.R. and Miri, T. (2015), "A real petroleum refinery wastewater treatment using hollow fiber membrane bioreactor (HF-MBR)", J. Water Process Eng., 8, 136-141. DOI: http://dx.doi.org/10.1016/j.jwpe.2015.09.011
  25. Razavi, S.M.R., Razavi, S.M.J., Miri, T. and Shirazian, S. (2013), "CFD simulation of $CO_2$ capture from gas mixtures in nanoporous membranes by solution of 2-amino-2- methyl-1-propanol and piperazine", Int. J. Greenh. Gas Con., 15, 142-149. https://doi.org/10.1016/j.ijggc.2013.02.011
  26. Razavi, S.M.R., Shirazian, S. and Najafabadi, M.S. (2015a), "Investigations on the ability of di-isopropanol amine solution for removal of $CO_2$ from natural gas in porous polymeric membranes", Polym. Eng. Sci., 55(3), 598-603. https://doi.org/10.1002/pen.23924
  27. Razavi, S.M.R., Marjani, A. and Shirazian, S. (2015b), "$CO_2$ capture from gas mixtures by alkanol amine solutions in porous membranes", Transp. Porous. Med., 106(2), 323-338. https://doi.org/10.1007/s11242-014-0403-7
  28. Razavi, S.M.R., Miri, T., Barati, A., Nazemian, M. and Sepasi, M. (2015c), "Industrial wastewater treatment by using of membrane", Membr. Water Treat., Int. J., 6(6), 489-499. https://doi.org/10.12989/mwt.2015.6.6.489
  29. Razavi, S.M.R., Shirazian, S. and Nazemian, M. (2016), "Numerical simulation of $CO_2$ separation from gas mixtures in membrane modules: Effect of chemical absorbent", Arab. J. Chem., 9(1), 62-71. https://doi.org/10.1016/j.arabjc.2015.06.006
  30. Rinker, E.B., Ashour, S.S. and Sandall, O.C. (1996), "Kinetics and modeling of carbon dioxide absorption into aqueous solutions of diethanolamine", Ind. Eng. Chem. Res., 35(4), 1107-1114. https://doi.org/10.1021/ie950336v
  31. Sayari, A. and Belmabkhout, Y. (2010), "Stabilization of amine-containing $CO_2$ adsorbents: Dramatic effect of water vapor", J. Am. Chem. Soc., 132(18), 6312-6314. https://doi.org/10.1021/ja1013773
  32. Shirazian, S., Moghadassi, A. and Moradi, S. (2009), "Numerical simulation of mass transfer in gas-liquid hollow fiber membrane contactors for laminar flow conditions", Simul. Model. Practice Theory, 17(4), 708-718. https://doi.org/10.1016/j.simpat.2008.12.002
  33. Tahvildari, K., Razavi, S.M.R., Tavakoli, H., Mashayekhi, A. and Golmohammadzadeh, R. (2015), "Modeling and simulation of membrane separation process using computational fluid dynamics", Arab. J. Chem., 9(1), 72-78. https://doi.org/10.1016/j.arabjc.2015.02.022
  34. Versteeg, G.F. and Van Swaaij, W.P.M. (1988), "On the kinetics between $CO_2$ and alkanolamines both in aqueous and non-aqueous solutions. I. Primary and secondary amines", Chem. Eng. Sci., 43(3), 573-585. https://doi.org/10.1016/0009-2509(88)87017-9
  35. Vinci, B.J., Summerfelt, S.T., Creaser, D.A. and Gillette, K. (2004), "Design of partial water reuse systems at White River NFH for the production of Atlantic salmon smolt for restoration stocking", Aquacult. Eng. 32(1), 225-243. https://doi.org/10.1016/j.aquaeng.2004.07.003
  36. Wang, R., Li, D.F. and Liang, D.T. (2004), "Modeling of $CO_2$ capture by three typical amine solutions in hollow fiber membrane contactors", Chem. Eng. Process., 43(7), 849-856. https://doi.org/10.1016/S0255-2701(03)00105-3
  37. Zhang, H.Y., Wang, R., Liang, D.T. and Tay, J.H. (2006), "Modeling and experimental study of $CO_2$ absorption in a hollow fiber membrane contactor", J. Membr. Sci., 279(1-2), 301-310. https://doi.org/10.1016/j.memsci.2005.12.017

Cited by

  1. Simulation of CO 2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors vol.108, 2016, https://doi.org/10.1016/j.cep.2016.07.001
  2. Mathematical Modeling and Simulation of Nitrate Separation from Contaminated Water in a Membrane Contactor 2016, https://doi.org/10.1007/s40995-016-0058-z