Acknowledgement
Supported by : Central Universities
References
- Chen, L., Duveau, G., Poutrel, A., Jia, Y., Shao, J.F. and Xie, N. (2014), "Numerical study of the interaction between adjacent galleries in a high-level radioactive waste repository", Int. J. Rock Mech. Min., 71, 405-417.
- Ding, W.X. and Feng, X.T. (2009), "Damage effect and fracture criterion of rock with multi-preexisting cracks under chemical erosion", Chin. J. Geotech. Eng., 31(6), 899-904. [In Chinese]
- Feng, X.T., Ding, W.X., Yao, H.Y. and Chen, S.L. (2010), Coupled Chemical Stress Effect on Rock Fracturing Process, Science Press, Beijing, China. [In Chinese]
- Gao, W., Wang, L. and Yang, D.Y. (2011), "Study on rock fracture failure criterion based on energy principles", Adv. Sci. Lett., 4(3), 869-874. https://doi.org/10.1166/asl.2011.1553
- Gao, G., Yao, W., Xia, K. and Li, Z. (2015), "Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method", Eng. Fract. Mech., 138, 146-155. https://doi.org/10.1016/j.engfracmech.2015.02.021
- Grgic, D. and Giraud, A. (2014), "The influence of different fluids on the static fatigue of a porous rock: Poro-mechanical coupling versus chemical effects", Mech. Mater., 71, 34-51. https://doi.org/10.1016/j.mechmat.2013.06.011
- Gross, D. and Seelig, T. (2011), Fracture Mechanics with Introduction to Micromechanics, Springer-Verlag, Berlin, Germany.
- Guo, J.C., Liu, H.F., Zhu, Y.Q. and Liu, Y.X. (2014), "Effects of acid-rock reaction heat on fluid temperature profile in fracture during acid fracturing in carbonate reservoirs", J. Petrol. Sci. Eng., 122, 31-37. https://doi.org/10.1016/j.petrol.2014.08.016
- Horri, H. and Nemat-Nasser, S. (1985), "Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure", J. Geophys. Res., 90(B4), 3105-3125. https://doi.org/10.1029/JB090iB04p03105
- Jaeger, J.C., Cook, N.G.W. and Zimmerman, R. (2009), Fundamentals of Rock Mechanics, Wiley-Blackwell, Hoboken, NJ, USA.
- Kazempour, M., Sundstrom, E. and Alvarado, V. (2012), "Geochemical modeling and experimental evaluation of high-pH floods: Impact of water-rock interactions in sandstone", Fuel, 92(1), 216-230. https://doi.org/10.1016/j.fuel.2011.07.022
- Li, F.B., Sheng, J.C., Zhan, M.L., Xu, L.M., Wu, Q. and Jia, C.L. (2014), "Evolution of limestone fracture permeability under coupled thermal, hydrological, mechanical, and chemical conditions", J. Hydrodyn., Ser. B, 26(2), 234-241. https://doi.org/10.1016/S1001-6058(14)60026-3
- Liu, T.Y., Cao, P. and Lin, H. (2014), "Damage and fracture evolution of hydraulic fracturing in compression-shear rock cracks", Theor. Appl. Fract. Mec., 74, 55-63. https://doi.org/10.1016/j.tafmec.2014.06.013
- Min, K.B., Rutqvist, J. and Elsworth, D. (2009), "Chemically and mechanically mediated influences on the transport and mechanical characteristics of rock fractures", Int. J. Rock Mech. Min., 46(1), 80-89. https://doi.org/10.1016/j.ijrmms.2008.04.002
- Mukhopadhyay, S., Liu, H.H., Spycher, N. and Kennedy, B.M. (2013), "Impact of fluid-rock chemical interactions on tracer transport in fractured rocks", J. Contam. Hydrol., 154, 42-52. https://doi.org/10.1016/j.jconhyd.2013.08.008
- Pandey, S.N., Chaudhuri, A., Kelkar, S., Sandeep, V.R. and Rajaram, H. (2014), "Investigation of permeability alteration of fractured limestone reservoir due to geothermal heat extraction using threedimensional thermo-hydro-chemical (THC) model", Geothermics, 51, 46-62. https://doi.org/10.1016/j.geothermics.2013.11.004
- Poulet, T., Karrech, A., Regenauer-Lieb, K., Fisher, L. and Schaubs, P. (2012), "Thermal-hydraulic-mechanical-chemical coupling with damage mechanics using ESCRIPTRT and ABAQUS", Tectonophysics, 526-529, 124-132. https://doi.org/10.1016/j.tecto.2011.12.005
- Pu, C.Z. and Cao, P. (2012), "Failure characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression", T. Nonferr. Metal. Soc., 22(1), 185-191. https://doi.org/10.1016/S1003-6326(11)61159-X
- Taron, J., Elsworth, D. and Min, K.B. (2009), "Numerical simulation of thermal-hydrologic-mechanicalchemical processes in deformable, fractured porous media", Int. J. Rock Mech. Min., 46(5), 842-854. https://doi.org/10.1016/j.ijrmms.2009.01.008
- Wang, Q., Zhou, Y.C., Wang, G., Jiang, H.W. and Liu, Y.S. (2012), "A fluid-solid-chemistry coupling model for shale wellbore stability", Petrol. Explor. Dev., 39(4), 508-513. https://doi.org/10.1016/S1876-3804(12)60069-X
- Wei, M.D., Dai, F., Xu, N.W., Xu, Y. and Xia, K. (2015), "Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens", Eng. Fract. Mech., 134, 286-303. https://doi.org/10.1016/j.engfracmech.2014.11.012
- Yu, Q.L., Zhu, W.C., Tang, C.A. and Yang, T.H. (2014), "Impact of rock microstructures on failure processes-Numerical study based on DIP technique", Geomech. Eng., Int. J., 7(4), 375-401. https://doi.org/10.12989/gae.2014.7.4.375
- Zhang, H.B., Zhang, W., Lv, L. and Feng, Y. (2010), "Effect of fissure water on mechanical characteristics of rock mass", Min. Sci. Tech., 20(6), 846-849. https://doi.org/10.1016/S1674-5264(09)60293-3
- Zhao, Z.H., Liu, L.C., Neretnieks, I. and Jing, L.R. (2014), "Solute transport in a single fracture with timedependent aperture due to chemically medicated changes", Int. J. Rock Mech. Min., 66, 69-75.
Cited by
- Change of pore structure and uniaxial compressive strength of sandstone under electrochemical coupling vol.17, pp.2, 2016, https://doi.org/10.12989/gae.2019.17.2.157