DOI QR코드

DOI QR Code

Fracture of rock affected by chemical erosion environment

  • Gao, W. (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, College of Civil and Transportation Engineering, Hohai University) ;
  • Ge, M.M. (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, College of Civil and Transportation Engineering, Hohai University)
  • Received : 2015.04.12
  • Accepted : 2016.05.11
  • Published : 2016.09.25

Abstract

As one natural material, the physical and mechanical properties of rock will be affected very largely by chemical erosion environment. Under chemical environment, the strength of rock will be reduced. Considering the effect of the chemical erosion, fracture factor of rock is reduced. The damage variable is applied to express the change of fracture stress. Therefore, the fracture criterion of rock under chemical environment is constructed. By one experiment of rock fracture under chemical erosion environment, the proposed fracture criterion is verified. The results show that, the fracture path by theory is agree with the testing one well.

Keywords

Acknowledgement

Supported by : Central Universities

References

  1. Chen, L., Duveau, G., Poutrel, A., Jia, Y., Shao, J.F. and Xie, N. (2014), "Numerical study of the interaction between adjacent galleries in a high-level radioactive waste repository", Int. J. Rock Mech. Min., 71, 405-417.
  2. Ding, W.X. and Feng, X.T. (2009), "Damage effect and fracture criterion of rock with multi-preexisting cracks under chemical erosion", Chin. J. Geotech. Eng., 31(6), 899-904. [In Chinese]
  3. Feng, X.T., Ding, W.X., Yao, H.Y. and Chen, S.L. (2010), Coupled Chemical Stress Effect on Rock Fracturing Process, Science Press, Beijing, China. [In Chinese]
  4. Gao, W., Wang, L. and Yang, D.Y. (2011), "Study on rock fracture failure criterion based on energy principles", Adv. Sci. Lett., 4(3), 869-874. https://doi.org/10.1166/asl.2011.1553
  5. Gao, G., Yao, W., Xia, K. and Li, Z. (2015), "Investigation of the rate dependence of fracture propagation in rocks using digital image correlation (DIC) method", Eng. Fract. Mech., 138, 146-155. https://doi.org/10.1016/j.engfracmech.2015.02.021
  6. Grgic, D. and Giraud, A. (2014), "The influence of different fluids on the static fatigue of a porous rock: Poro-mechanical coupling versus chemical effects", Mech. Mater., 71, 34-51. https://doi.org/10.1016/j.mechmat.2013.06.011
  7. Gross, D. and Seelig, T. (2011), Fracture Mechanics with Introduction to Micromechanics, Springer-Verlag, Berlin, Germany.
  8. Guo, J.C., Liu, H.F., Zhu, Y.Q. and Liu, Y.X. (2014), "Effects of acid-rock reaction heat on fluid temperature profile in fracture during acid fracturing in carbonate reservoirs", J. Petrol. Sci. Eng., 122, 31-37. https://doi.org/10.1016/j.petrol.2014.08.016
  9. Horri, H. and Nemat-Nasser, S. (1985), "Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure", J. Geophys. Res., 90(B4), 3105-3125. https://doi.org/10.1029/JB090iB04p03105
  10. Jaeger, J.C., Cook, N.G.W. and Zimmerman, R. (2009), Fundamentals of Rock Mechanics, Wiley-Blackwell, Hoboken, NJ, USA.
  11. Kazempour, M., Sundstrom, E. and Alvarado, V. (2012), "Geochemical modeling and experimental evaluation of high-pH floods: Impact of water-rock interactions in sandstone", Fuel, 92(1), 216-230. https://doi.org/10.1016/j.fuel.2011.07.022
  12. Li, F.B., Sheng, J.C., Zhan, M.L., Xu, L.M., Wu, Q. and Jia, C.L. (2014), "Evolution of limestone fracture permeability under coupled thermal, hydrological, mechanical, and chemical conditions", J. Hydrodyn., Ser. B, 26(2), 234-241. https://doi.org/10.1016/S1001-6058(14)60026-3
  13. Liu, T.Y., Cao, P. and Lin, H. (2014), "Damage and fracture evolution of hydraulic fracturing in compression-shear rock cracks", Theor. Appl. Fract. Mec., 74, 55-63. https://doi.org/10.1016/j.tafmec.2014.06.013
  14. Min, K.B., Rutqvist, J. and Elsworth, D. (2009), "Chemically and mechanically mediated influences on the transport and mechanical characteristics of rock fractures", Int. J. Rock Mech. Min., 46(1), 80-89. https://doi.org/10.1016/j.ijrmms.2008.04.002
  15. Mukhopadhyay, S., Liu, H.H., Spycher, N. and Kennedy, B.M. (2013), "Impact of fluid-rock chemical interactions on tracer transport in fractured rocks", J. Contam. Hydrol., 154, 42-52. https://doi.org/10.1016/j.jconhyd.2013.08.008
  16. Pandey, S.N., Chaudhuri, A., Kelkar, S., Sandeep, V.R. and Rajaram, H. (2014), "Investigation of permeability alteration of fractured limestone reservoir due to geothermal heat extraction using threedimensional thermo-hydro-chemical (THC) model", Geothermics, 51, 46-62. https://doi.org/10.1016/j.geothermics.2013.11.004
  17. Poulet, T., Karrech, A., Regenauer-Lieb, K., Fisher, L. and Schaubs, P. (2012), "Thermal-hydraulic-mechanical-chemical coupling with damage mechanics using ESCRIPTRT and ABAQUS", Tectonophysics, 526-529, 124-132. https://doi.org/10.1016/j.tecto.2011.12.005
  18. Pu, C.Z. and Cao, P. (2012), "Failure characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression", T. Nonferr. Metal. Soc., 22(1), 185-191. https://doi.org/10.1016/S1003-6326(11)61159-X
  19. Taron, J., Elsworth, D. and Min, K.B. (2009), "Numerical simulation of thermal-hydrologic-mechanicalchemical processes in deformable, fractured porous media", Int. J. Rock Mech. Min., 46(5), 842-854. https://doi.org/10.1016/j.ijrmms.2009.01.008
  20. Wang, Q., Zhou, Y.C., Wang, G., Jiang, H.W. and Liu, Y.S. (2012), "A fluid-solid-chemistry coupling model for shale wellbore stability", Petrol. Explor. Dev., 39(4), 508-513. https://doi.org/10.1016/S1876-3804(12)60069-X
  21. Wei, M.D., Dai, F., Xu, N.W., Xu, Y. and Xia, K. (2015), "Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens", Eng. Fract. Mech., 134, 286-303. https://doi.org/10.1016/j.engfracmech.2014.11.012
  22. Yu, Q.L., Zhu, W.C., Tang, C.A. and Yang, T.H. (2014), "Impact of rock microstructures on failure processes-Numerical study based on DIP technique", Geomech. Eng., Int. J., 7(4), 375-401. https://doi.org/10.12989/gae.2014.7.4.375
  23. Zhang, H.B., Zhang, W., Lv, L. and Feng, Y. (2010), "Effect of fissure water on mechanical characteristics of rock mass", Min. Sci. Tech., 20(6), 846-849. https://doi.org/10.1016/S1674-5264(09)60293-3
  24. Zhao, Z.H., Liu, L.C., Neretnieks, I. and Jing, L.R. (2014), "Solute transport in a single fracture with timedependent aperture due to chemically medicated changes", Int. J. Rock Mech. Min., 66, 69-75.

Cited by

  1. Change of pore structure and uniaxial compressive strength of sandstone under electrochemical coupling vol.17, pp.2, 2016, https://doi.org/10.12989/gae.2019.17.2.157