과제정보
연구 과제 주관 기관 : CUMT, National Science Foundation of China
참고문헌
- AASHTO (1998), Standard Specification for Highway Bridges. American Association of State Highway and Transportation Officials; Washington, D.C., USA.
- Abu-Farsakh, M., Coronel, J. and Tao, M. (2007), "Effect of soil moisture content and dry density on cohesive soil-geosynthetic interactions using large direct shear tests", J. Mater. Civil Eng., 19(7), 540-549. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(540)
- Acar, Y.B., Durgunoglu, H.T. and Tumay, M.T. (1982), "Interface properties of sand", J. Geotech. Geoenviron. Eng., 108(GT4).
- Cabalar, A.F. (2016), "Cyclic behavior of various sands and structural materials interfaces", Geomech. Eng., Int. J., 10(1), 1-19.
- Chu, L.-M. and Yin, J. (2006), "Study on soil-cement grout interface shear strength of soil nailing by direct shear box testing method", Geomech. Geoeng.: Int. J., 1(4), 259-273. https://doi.org/10.1080/17486020601091742
- Evans, M. and Fennick, T. (1995), "Geosynthetic/soil interface friction angles using a rotation shear device", ASTM Geotech. Test. J., 18(2), 271-275. https://doi.org/10.1520/GTJ10327J
- Hossain, M.A. and Yin, J.-H. (2013), "Behavior of a pressure-grouted soil-cement interface in direct shear tests", Int. J. Geomech., 14(1), 101-109.
- Howard, A.K. (1977), Laboratory Classification of Soils: Unified Soil Classification System; US Department of the Interior, Bureau of Reclamation, Engineering and Research Center, Division of Research, Geotechnical Branch.
- Hsu, C.-W., Chang, C.-C. and Lin, C.-J. (2010), A Practical Guide to Support Vector Classication, Department of Computer Science, National Taiwan University.
- Hu, L. and Pu, J. (2004), "Testing and modeling of soil-structure interface", J. Geotech. Geoenviron. Eng., 130(8), 851-860. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(851)
- Huseyin, S.A., Gor, M. and Inal, E. (2016), "A new design chart for estimating friction angle between soil and pile materials", Geomech. Eng., Int. J., 10(3), 315-324. https://doi.org/10.12989/gae.2016.10.3.315
- Jewell, R. and Wroth, C. (1987), "Direct shear tests on reinforced sand", Geotechnique, 37(1), 53-68. https://doi.org/10.1680/geot.1987.37.1.53
- Ji, J., Zhang, C.S., Kodikara, J. and Yang, S.-Q. (2015), "Prediction of stress concentration factor of corrosion pits on buried pipes by least squares support vector machine", Eng. Fail. Anal., 55, 131-138. https://doi.org/10.1016/j.engfailanal.2015.05.010
- Joseph, P.G. (2012), "Physical basis and validation of a constitutive model for soil shear derived from microstructural changes", Int. J. Geomech., 13(4), 365-383.
- Joseph, P.G. and Graham-Eagle, J. (2015), "Analytical solution of a dynamical systems soil model", Analytical Methods in Petroleum Upstream Applications; Computer Methods and Recent Advances in Geomechanics, pp. 219-224.
- Kang, F., Han, S., Salgado, R. and Li, J. (2015), "System probabilistic stability analysis of soil slopes using Gaussian process regression with Latin hypercube sampling", Comput. Geotech., 63, 13-25. https://doi.org/10.1016/j.compgeo.2014.08.010
- Kanji, M. and Wolle, C. (1977), "Residual strength new testing and microstructure", Proceedings of the 9th ICSMFE, Tokyo, Japan, July, Volume 1, pp. 153-154.
- Kulhawy, F. and Peterson, M. (1979), "Behavior of sand-concrete interfaces", Proceedings of the 6th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, Lima, Peru, September.
- Lupini, J., Skinner, A. and Vaughan, P. (1981), "The drained residual strength of cohesive soils", Geotechnique, 31(2), 181-213. https://doi.org/10.1680/geot.1981.31.2.181
- Mitchell, J.K. and Soga, K. (1976), Fundamentals of Soil Behavior, Wiley, New York, NY, USA.
- O'Rourke, T., Druschel, S. and Netravali, A. (1990), "Shear strength characteristics of sand-polymer interfaces", J. Geotech. Eng., 116(3), 451-469. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:3(451)
- Potyondy, J.G. (1961), "Skin friction between various soils and construction materials", Geotechnique, 11(4), 339-353. https://doi.org/10.1680/geot.1961.11.4.339
- Randolph, M., White, D. and Yan, Y. (2012), "Modelling the axial soil resistance on deep-water pipelines", Geotechnique, 62(9), 837-846. https://doi.org/10.1680/geot.12.OG.010
- Shakir, R. and Zhu, J. (2009), "Behavior of compacted clay-concrete interface", Frontiers of Architecture and Civil Engineering in China, 3(1), 85-92. https://doi.org/10.1007/s11709-009-0013-6
- Standard-IS-1498 (1970), Classification and Identification of Soils for General Engineering Purposes; New Delhi, India.
- Suykens, J.A.K. and Vandewalle, J. (1999), "Least squares support vector machine classifiers", Neural Processing Lett., 9(3), 293-300. https://doi.org/10.1023/A:1018628609742
- Suykens, J.A.K., De Brabanter, J., Lukas, L. and Vandewalle, J. (2002), "Weighted least squares support vector machines: robustness and sparse approximation", Neurocomputing, 48(1-4), 85-105. https://doi.org/10.1016/S0925-2312(01)00644-0
- The Ministry of Water Resources, P.R.C. (1999), Test Methods of Soils, WaterPower Press, Beijing, China; SL237-1999.
- Uesugi, M., Kishida, H. and Uchikawa, Y. (1990), "Friction between dry sand and concrete under monotonic and repeated loading", Soils Found., 30(1), 115-128. https://doi.org/10.3208/sandf1972.30.115
- Vapnik, V. (2000), The nature of statistical learning theory, Springer Science & Business Media.
- Wang, C.H., Jin, K. and Zhan, C. (2013), "Model test studies of the mechanical properties of pile-soil interface", Appl. Mech. Mater., 392, 904-908. https://doi.org/10.4028/www.scientific.net/AMM.392.904
- Williams, N. and Houlihan, M. (1987), "Evaluation of interface friction properties between geosynthetics and soils", Proceedings of Geosynthetics, 87, 616-627.
- Yoshimi, Y. and Kishida, T. (1981), "Friction between sand and metal surface", Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, June.
- Zhang, W.G. and Goh, A.T.C. (2013), "Multivariate adaptive regression splines for analysis of geotechnical engineering systems", Comput. Geotech., 48, 82-95. https://doi.org/10.1016/j.compgeo.2012.09.016
- Zhao, H., Ru, Z., Chang, X., Yin, S. and Li, S. (2014), "Reliability analysis of tunnel using least square support vector machine", Tunn. Undergr. Space Technol., 41, 14-23. https://doi.org/10.1016/j.tust.2013.11.004
피인용 문헌
- Shear strength behavior of crude oil contaminated sand-concrete interface vol.12, pp.2, 2016, https://doi.org/10.12989/gae.2017.12.2.211
- Evaluation of concrete compressive strength based on an improved PSO-LSSVM model vol.21, pp.5, 2016, https://doi.org/10.12989/cac.2018.21.5.505
- Static behavior of a laterally loaded guardrail post in sloping ground by LS-DYNA vol.15, pp.5, 2018, https://doi.org/10.12989/gae.2018.15.5.1101
- Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines vol.29, pp.3, 2016, https://doi.org/10.12989/scs.2018.29.3.309
- MARS inverse analysis of soil and wall properties for braced excavations in clays vol.16, pp.6, 2016, https://doi.org/10.12989/gae.2018.16.6.577
- Frictional responses of concrete-to-concrete bedding planes under complex loading conditions vol.17, pp.3, 2016, https://doi.org/10.12989/gae.2019.17.3.253
- Method using XFEM and SVR to predict the fatigue life of plate-like structures vol.73, pp.4, 2016, https://doi.org/10.12989/sem.2020.73.4.455
- Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength vol.23, pp.1, 2020, https://doi.org/10.12989/gae.2020.23.1.061
- Strength prediction of paste filling material based on convolutional neural network vol.37, pp.3, 2016, https://doi.org/10.1111/coin.12373