Acknowledgement
Supported by : Korea Agency for Infrastructure Technology Advancement (KAIA)
References
- Alhassan, M. (2011), State-of-the-Art Report on Full-Depth Precast Concrete Bridge Deck Panels.
- Amann, M.C., Bosch, T., Lescure, M., Myllyla, R. and Rioux, M. (2001), "Laser ranging: a critical review of usual techniques for distance measurement", Opt. Eng., 40(1), 10-19. https://doi.org/10.1117/1.1330700
- American Concrete Institute (ACI) (2006), ACI 117-06-Specifications for Tolerances for Concrete Construction and Materials and Commentary.
- ASTM (2008), ASTM E 1155-96 -Standard Test Method for Determining FF Floor Flatness and FL Floor Levelness Numbers.
- Bai, H., Ye, X.W., Yi, T.H., Dong, C.Z. and Liu, T. (2015), "Multi-point displacement monitoring of bridges using a vision-based approach", Wind Struct., 20(2), 315-326. https://doi.org/10.12989/was.2015.20.2.315
- Ballast, D.K. (2007), Handbook of Construction Tolerances. John Wiley & Sons.
- Bosche, F. (2010), "Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction", Adv. Eng. Inform., 24(1), 107-118. https://doi.org/10.1016/j.aei.2009.08.006
- Bosche, F. and Biotteau, B. (2015), "Terrestrial laser scanning and continuous wavelet transform for controlling surface flatness in construction-A first investigation", Adv. Eng. Inform., 29(3), 591-601. https://doi.org/10.1016/j.aei.2015.05.002
- Bosche, F. and Guenet, E. (2014), "Automating surface flatness control using terrestrial laser scanning and building information models", Automat. Constr., 44, 212-226. https://doi.org/10.1016/j.autcon.2014.03.028
- Bosche, F., Ahmed, M., Turkan, Y., Haas, C.T. and Haas, R. (2015), "The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components", Automat. Constr., 49, 201-213. https://doi.org/10.1016/j.autcon.2014.05.014
- British Standard Institution (BSI) (2009), BS 8204-Screeds, Bases and In Situ Flooring.
- El-Omari, S. and Moselhi, O. (2008), "Integrating 3D laser scanning and photogrammetry for progress measurement of construction work", Automat. Constr., 18(1), 1-9.
- FARO (2015), FARO Focus 3D laser scanner. http://www.faro.com/.
- Glass, J. (2000), The Future for Precast Concrete in Low-rise Housing. Leicester: British Precast Concrete Federation.
- Kim, M.K., Sohn, H. and Chang, C.C. (2014), "Automated dimensional quality assessment of precast concrete panels using terrestrial laser scanning", Automat. Constr., 45, 163-177. https://doi.org/10.1016/j.autcon.2014.05.015
- Makerbot (2015), Makerbot replicator 3D printer. https://www.makerbot.com/.
- Monserrat, O. and Crosetto, M. (2008), "Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching", ISPRS J. Photogramm., 63(1), 142-154. https://doi.org/10.1016/j.isprsjprs.2007.07.008
- Park, H.S., Lee, H.M., Adeli, H. and Lee, I. (2007), "A new approach for health monitoring of structures:terrestrial laser scanning", Comput-Aided Civ. Inf., 22(1), 19-30. https://doi.org/10.1111/j.1467-8667.2006.00466.x
- Phares, B.M., Washer, G.A., Rolander, D.D., Graybeal, B.A. and Moore, M. (2004), "Routine highway bridge inspection condition documentation accuracy and reliability", J. Bridge Eng., 9(4), 403-413. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:4(403)
- Precast/Prestressed Concrete Institute (PCI) (2000), 135-Tolerance Manual for Precast and Prestressed Concrete Construction.
- Tang, P., Huber, D. and Akinci, B. (2010), "Characterization of laser scanners and algorithms for detecting flatness defects on concrete surfaces", J. Comput. Civil Eng., 25(1), 31-42. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000073
- Teza, G., Galgaro, A. and Moro, F. (2009), "Contactless recognition of concrete surface damage from laser scanning and curvature computation", NDT&E Int., 42(4), 240-249. https://doi.org/10.1016/j.ndteint.2008.10.009
- Turkan, Y., Bosche, F., Haas, C.T. and Haas, R. (2012), "Automated progress tracking using 4D schedule and 3D sensing technologies", Automat. Constr., 22, 414-421. https://doi.org/10.1016/j.autcon.2011.10.003
- Wacker, J.M., Eberhard, M.O. and Stanton, J.F. (2005), State-of-the-art Report on Precast Concrete Systems for Rapid Construction of Bridges (No. WA-RD 594.1). Washington State Department of Transportation.
- Xiong, X., Adan, A., Akinci, B. and Huber, D. (2013), "Automatic creation of semantically rich 3D building models from laser scanner data", Automat. Constr., 31, 325-337. https://doi.org/10.1016/j.autcon.2012.10.006
- Yee, A.A. and Eng, P.H.D. (2001), "Social and environmental benefits of precast concrete technology", PCI J., 46(3), 14-19.
- Yeum, C.M. and Dyke, S.J. (2015), "Vision‐based automated crack detection for bridge inspection", Comput-Aided Civ. Inf.
- Yi, T.H., Li, H.N. and Gu, M. (2013), "Experimental assessment of high-rate GPS receivers for deformation monitoring of bridge", Measurement, 46(1), 420-432. https://doi.org/10.1016/j.measurement.2012.07.018
- Yi, T.H., Li, H.N. and Gu, M. (2013), "Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer", Smart Struct. Syst., 11(4), 331-348. https://doi.org/10.12989/sss.2013.11.4.331
Cited by
- Automated Estimation of Reinforced Precast Concrete Rebar Positions Using Colored Laser Scan Data vol.32, pp.9, 2017, https://doi.org/10.1111/mice.12293
- Optimal placement of precast bridge deck slabs with respect to precast girders using 3D laser scanning vol.86, 2018, https://doi.org/10.1016/j.autcon.2017.11.004
- Automatic As-Built BIM Creation of Precast Concrete Bridge Deck Panels Using Laser Scan Data vol.32, pp.3, 2018, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000754
- Computational Methods of Acquisition and Processing of 3D Point Cloud Data for Construction Applications pp.1886-1784, 2020, https://doi.org/10.1007/s11831-019-09320-4
- Towards Automatic Segmentation and Recognition of Multiple Precast Concrete Elements in Outdoor Laser Scan Data vol.11, pp.11, 2016, https://doi.org/10.3390/rs11111383
- Automated Geometric Quality Inspection of Prefabricated Housing Units Using BIM and LiDAR vol.12, pp.15, 2016, https://doi.org/10.3390/rs12152492
- Smart Structural Health Monitoring of Flexible Pavements Using Machine Learning Methods vol.10, pp.11, 2016, https://doi.org/10.3390/coatings10111100
- Laser Scanning Based Surface Flatness Measurement Using Flat Mirrors for Enhancing Scan Coverage Range vol.13, pp.4, 2016, https://doi.org/10.3390/rs13040714
- Single-shot multibox detector- and building information modeling-based quality inspection model for construction projects vol.38, pp.None, 2016, https://doi.org/10.1016/j.jobe.2021.102216
- Onsite Quality Check for Installation of Prefabricated Wall Panels Using Laser Scanning vol.11, pp.9, 2016, https://doi.org/10.3390/buildings11090412
- Application of Terrestrial Laser Scanning (TLS) in the Architecture, Engineering and Construction (AEC) Industry vol.22, pp.1, 2016, https://doi.org/10.3390/s22010265