과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China
참고문헌
- Colorni, A., Dorigo, M. and Maniezzo, V. (1991), "A distributed optimization by ant colonies", Proceedings of the 1st European Conference on Artificial Life, Paris, December.
- Eberhart, R.C. and Kennedy, J. (1995), "A new optimizer using particle swarm theory", Proceedings of the 6th International Symposium On Micro Machine and Human Science, NJ.
- Elbeltagi, E., Hegazy, T. and Grierson, D. (2005), "Comparison among five evolutionary-based optimization algorithms", Adv. Eng. Inform., 19(1), 43-53. https://doi.org/10.1016/j.aei.2005.01.004
- Eusuff, M., Lansey, K. and Pasha, F. (2006), "Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization", Eng. Optimiz., 38(2), 129-154. https://doi.org/10.1080/03052150500384759
- Eusuff, M.M. and Lansey, K.E. (2003), "Optimization of water distribution network design using the shuffled frog leaping algorithm", J. Water Res. Pl.-ASCE, 129(3), 210-225. https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
- Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simulat., 76(2), 60-68. https://doi.org/10.1177/003754970107600201
- Holland, J.H. (1975), Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, Michigan, USA.
- Holland, J.H. (1988), "Genetic algorithms and machine learning", Mach. Learn., 3(2), 95-99. https://doi.org/10.1023/A:1022602019183
- Kennedy, J. (2010), "Encyclopedia of machine learning", Springer, Berlin, Germany.
- Lawler, E.L. and Wood, D.E. (1966), "Branch-and-bound methods: A survey", Oper. Res., 14(4), 699-719. https://doi.org/10.1287/opre.14.4.699
- Lei, Y., Liu, C., Jiang Y.Q., and Mao, Y.K. (2013), "Substructure based structural damage detection with limited input and output measurements", Smart. Struct. Syst., 12(6), 619-640. https://doi.org/10.12989/sss.2013.12.6.619
- Lei, Y., Wang, H.F. and Shen, W.A. (2012), "Update the finite element model of Canton Tower based on direct matrix updating with incomplete modal data", Smart. Struct. Syst., 10(4-5), 471-483. https://doi.org/10.12989/sss.2012.10.4_5.471
- Li, J. and Law, S.S. (2012), "Damage identification of a target substructure with moving load excitation", Mech. Syst. Signal Pr., 30(7), 78-90. https://doi.org/10.1016/j.ymssp.2012.02.002
- Li, J., Hao, H. and Lo, J.V. (2015), "Structural damage identification with power spectral density transmissibility: numerical and experimental studies", Smart. Struct. Syst., 15(1), 15-40. https://doi.org/10.12989/sss.2015.15.1.015
- Li, X.L. and Qian, J.X. (2003), "Studies on artificial fish swarm optimization algorithm based on decomposition and coordination techniques", Circ. Syst., 1, 1-6.
- Li, X.L., Lu, F., Tian, G.H. and Qian, J.X. (2004), "Applications of artificial fish school algorithm in combinatorial optimization problems", J. Shandong Univ. (Eng. Sci.), 5, 015.
- MATLAB, The MathWorks, Inc. Natwick, MA (USA), http://www.mathworks.com.
- Moller, M.F. (1993), "A scaled conjugate gradient algorithm for fast supervised learning", Neur. Net., 6(4), 525-533. https://doi.org/10.1016/S0893-6080(05)80056-5
- Nagy, M., A kos, Z., Biro, D. and Vicsek, T. (2010), "Hierarchical group dynamics in pigeon flocks", Nature, 464(7290), 890-893. https://doi.org/10.1038/nature08891
- Perera, T.B.D. and Guilford, T. (1999), "The orientational consequences of flocking behavior in homing pigeons, Columba livia", Ethology, 105(1), 13-23. https://doi.org/10.1111/j.1439-0310.1999.tb01217.x
- Qi, L. and Sun, J.A. (1993), "A nonsmooth version of Newton's method", Math. Program., 58(1-3), 353-367. https://doi.org/10.1007/BF01581275
- Shi, Y. and Eberhart, R. (1998), "A modified particle swarm optimizer", Proceedings of the IEEE World Congress on Computational Intelligence, Anchorage, May.
- Shi, Y. and Eberhart, R.C. (1999), "Empirical study of particle swarm optimization", Proceedings of the 1999 Congress on Evolutionary Computation, Washington, July, 3.
- Spielman, D.A. and Teng, S.H. (2004), "Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time", ACM (JACM), 51(3), 385-463. https://doi.org/10.1145/990308.990310
- Tamm, S. (1980), "Bird orientation: single homing pigeons compared with small flocks", Behav. Ecol. Sociobiol., 7(4), 319-322. https://doi.org/10.1007/BF00300672
- Tan, S.S. (2011), "A new swarm intelligent optimization algorithm: cell membrane optimization and its applications", Master. Dissertation, South China University of Technology, Guangzhou, China.
- Yan, X.H. (2010), "Research on path planning for mobile robot based on the biological intelligence", Ms.D. Dissertation, North China Electric University (Baoding), China.
- Yang, X.S. (2009), "Stochastic algorithms: foundations and applications", Springer, Berlin, Germany.
- Yi, T.H., Li, H.N. and Zhang, X.D. (2012a), "A modified monkey algorithm for optimal sensor placement in structural health monitoring", Smart. Mater. Struct., 21(10), 105033. https://doi.org/10.1088/0964-1726/21/10/105033
- Zhang, H.T., Chen, Z., Vicsek, T., Feng, G., Sun, L., Su, R. and Zhou, T. (2014), "Route-dependent switch between hierarchical and egalitarian strategies in pigeon flocks", Sci. Rep., 4, 1-7.
- Zhao, R.Q. and Tang, W.S. (2008), "Monkey algorithm for global numerical optimization", J. Uncertain Syst., 2(3), 165-176.
- Zuo, X., Chen, C., Tan, W. and Zhou, M. (2015), "Vehicle scheduling of an urban bus line via an improved multiobjective genetic algorithm", J. Intell. Transport. S., 16(2), 1030-1041.
피인용 문헌
- Natural Computing Applied to the Underground System: A Synergistic Approach for Smart Cities vol.18, pp.12, 2018, https://doi.org/10.3390/s18124094
- Numerical and experimental verifications on damping identification with model updating and vibration monitoring data vol.20, pp.2, 2016, https://doi.org/10.12989/sss.2017.20.2.127
- Improved thermal exchange optimization algorithm for optimal design of skeletal structures vol.21, pp.3, 2016, https://doi.org/10.12989/sss.2018.21.3.263
- Simplified dolphin echolocation algorithm for optimum design of frame vol.21, pp.3, 2016, https://doi.org/10.12989/sss.2018.21.3.321
- Multi-objective colliding bodies optimization algorithm for design of trusses vol.6, pp.1, 2016, https://doi.org/10.1016/j.jcde.2018.04.001
- Total and Partial Updating Technique: A Swift Approach for Cross-Section and Geometry Optimization of Truss Structures vol.24, pp.4, 2016, https://doi.org/10.1007/s12205-020-2096-5