References
- Abdullah, M.M., Richardson, A. and Hanif, J. (2001), "Layout of sensors/actuators on civil structures using genetic algorithms", Earthq. Eng. Struct. D., 30, 1167-1184. https://doi.org/10.1002/eqe.57
- Buczak, A.L., Wang, H.H., Darabi, H. and Jafari, M.A. (2001), "Genetic algorithm convergence study for sensor network optimization", Inform. Sci., 133(3-4), 267-282. https://doi.org/10.1016/S0020-0255(01)00089-5
- He, X., She, T. and Zhao, L. (2012), "A new system for dynamic deflection measurement of highway bridge", Appl. Mech. Mater., 226-228, 1645-1650. https://doi.org/10.4028/www.scientific.net/AMM.226-228.1645
- Heo, G., Wang, M. L., and Satpathi, D. (1997), "Optimal transducer layout for health monitoring of long span bridge", Soil. Dyn. Earthq. Eng., 16(7-8), 495-502. https://doi.org/10.1016/S0267-7261(97)00010-9
- Kammer, D.C. (1990), "Sensor layout for on-orbit modal identification and correlation of large space structures", Proceedings of the American Control Conf., IEEE, New York.
- Lei, Y. and Zheng, Z.P. (2013), "Review of physical based monitoring techniques for condition assessment of corrosion in reinforced concrete", Math. Probl. Eng., Article ID 953930, 14 pages, http://dx.doi.org/10.1155/2013 /953930.
- Meo, M. and Zumpano, G. (2005), "On the optimal sensor layout techniques for a bridge structure", Eng. Struct., 27(10), 1488-1497. https://doi.org/10.1016/j.engstruct.2005.03.015
- Papadopoulos, M. and Garcia, E. (1998), "Sensor layout methodologies for dynamic testing", AIAA J., 36(2), 256-263. https://doi.org/10.2514/2.7509
- Shen, S., Wu, S.Z., Yang, C.Q., Wan, C.F., Tang, Y.S. and Wu, G. (2010), "An improved conjugated beam method for deformation monitoring with a distributed sensitive fiber optic sensor", Struct. Health Monit., 9(4), 361-378. https://doi.org/10.1177/1475921710361326
- Worden, K. and Burrows, A.P. (2001), "Optimal sensor layout for fault detection", Eng. Struct., 23(8), 885-901. https://doi.org/10.1016/S0141-0296(00)00118-8
- Yau, M.H., Chan, T.H.T., Thambiratnam, D.P. and Tam, H.Y. (2013), "Static vertical displacement measurement of bridges using Fiber Bragg Grating (FBG) sensors", Adv. Struct. Eng., 16(1), 165-176. https://doi.org/10.1260/1369-4332.16.1.165
- Yi, T.H., Li, H.N. and Wang X. (2013), "Multi-dimensional sensor layout optimization for Canton Tower focusing on application demands", Smart Struct. Syst., 12(3-4), 235-250. https://doi.org/10.12989/sss.2013.12.3_4.235
- Yi, T.H., Li, H.N. and Zhang, X.D. (2015), "Health monitoring sensor layout optimization for Canton Tower using immune monkey algorithm", Struct. Control Health, 22(1), 123-138. https://doi.org/10.1002/stc.1664
- Yung, B.L., Chang, K.C., Chern, J.C. and Wang, L.A. (2004), "The health monitoring of a prestressed concrete beam by using fiber Bragg grating sensors", Smart Mater. Struct., 13(4), 712-718. https://doi.org/10.1088/0964-1726/13/4/008
- Zhang, J., Hong, W., Tang, Y.S., Yang, C.Q., Wu, G. and Wu, Z.S. (2013), "Structural health monitoring of a steel stringer bridge with area sensing", Structural and Infrastructural Engineering: Maintenance, Management, Life-Cycle Design and Performance, DOI: 10.1080/15732479.2013.787103
- Zhang, Q.Q., Zhang, J. and Wu, Z.S. (2015), "Deflection identification of the tied arch bridge from long-gauge strain", Proceedings of the 7th International Society for Structural Health Monitoring of Intelligent Infrastructure, July 1-3,Torino, Italy.
- Zheng, Z., Lei, Y. and Sun, X. (2010), "Measuring corrosion of steels in concrete via fiber Bragg grating sensors-lab experimental test and in-field application", Proceedings of the Earth and Space Conference, Honolulu, Hawaii, USA.
Cited by
- Localisation of embedded water drop in glass composite using THz spectroscopy vol.21, pp.6, 2018, https://doi.org/10.12989/sss.2018.21.6.751
- Deflection distribution estimation of the main arch of arch bridges based on long-gauge fiber optic sensing technology vol.22, pp.15, 2016, https://doi.org/10.1177/1369433219862433
- Moving Load Identification with Long Gauge Fiber Optic Strain Sensing vol.16, pp.3, 2016, https://doi.org/10.7250/bjrbe.2021-16.535