Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Afolabi, D. (1986), "Natural frequencies of cantilever blades with resilient roots", J. Sound Vib., 110(3), 429-441. https://doi.org/10.1016/S0022-460X(86)80145-6
- Choi, H.S. (2001), "Free spanning analysis of offshore pipelines", Ocean Eng., 28(10), 1325-1338. https://doi.org/10.1016/S0029-8018(00)00071-8
- Chun, K.R. (1972), "Free vibration of a beam with one end spring-hinged and the other free", J. Appl. Mech., 39(4), 1154-1155. https://doi.org/10.1115/1.3422854
- Duy, H.T., Van, T.N. and Noh, H.C. (2014), "Eigen analysis of functionally graded beams with variable cross-section resting on elastic supports and elastic foundation", Struct. Eng. Mech., 52(5), 1033-1049. https://doi.org/10.12989/sem.2014.52.5.1033
- Faires, J.D. and Burden, R.L. (2012), Numerical Methods, 4th edition, Books Cole, Boston, USA.
- Han, S.M., Benaroya, H. and Wei, T. (1999), "Dynamics of transversely vibrating beams using four engineering theories", J. Sound Vib., 225(5), 935-988. https://doi.org/10.1006/jsvi.1999.2257
- Kang, J.H. (2014), "An exact frequency equation in closed form for Timoshenko beam clamped at both ends", J. Sound Vib., 333(14), 3332-3337. https://doi.org/10.1016/j.jsv.2014.02.027
- Lee, S.Y. and Ke, H.Y. (2000), "Free vibrations of a non-uniform beam with general elastically restrained boundary conditions", J. Sound Vib., 136(3), 425-437. https://doi.org/10.1016/0022-460X(90)90454-8
- Li, W.L. (2000), "Free vibrations of beams with general boundary conditions", J. Sound Vib., 237(4), 709-725. https://doi.org/10.1006/jsvi.2000.3150
- Liang, X., Hu, S. and Shen, S. (2014), "A new Bernoulli-Euler beam model based on a simplified strain gradient elasticity theory and its applications", Compos. Struct., 111(11), 317-323. https://doi.org/10.1016/j.compstruct.2014.01.019
- Maurizi, M.J., Rossi, R.E. and Reyes, J.A. (1976), "Vibration frequencies for a beam with one end spring hinged and subjected to a translational restraint at the other end", J. Sound Vib., 48(4), 565-568. https://doi.org/10.1016/0022-460X(76)90559-9
- Ozturk, B. and Coskun, S.B. (2013), "Analytical solution for free vibration analysis of beam on elastic foundation with different support conditions", Math. Probl. Eng., Article ID 470927, 1-7.
- Plankis, A., Lebsack, M. and Heyliger, P.R. (2015), "Elasticity-based beam vibrations for various support conditions", Appl. Math. Model., 39(22), 6860-6879. https://doi.org/10.1016/j.apm.2015.02.023
- Rao, C.K. and Mirza, S. (1989), "A note on vibrations of generally restrained beams", J. Sound Vib., 130(3), 453-465. https://doi.org/10.1016/0022-460X(89)90069-2
- Shi, L., Yan, W. and He, H. (2014), "The modal characteristics of non-uniform multi-span continuous beam bridges", Struct. Eng. Mech., 52(5), 997-1017. https://doi.org/10.12989/sem.2014.52.5.997
- Thomson, W.T. and Dahleh, M.D. (1997), Theory of Vibration with Applications, 5th Edition, Prentice Hall, Upper Saddle River, New Jersey, USA.
- Timoshenko, S.P. (1953), History of Strength of Materials, Dover Publications, Inc., New York, USA.
- Traill-Nash, R.W. and Collar, A.R. (1953), "The effects of shear flexibility and rotatory inertia on the bending vibrations of beams", Q. J. Mech. Appl. Math., 6(2), 186-222. https://doi.org/10.1093/qjmam/6.2.186
- Wang, T., Li, H. and Ge, Y. (2015), "Vertical seismic response analysis of straight girder bridges considering effects of support structures", Earthq. Struct., 8(6), 1481-1497. https://doi.org/10.12989/eas.2015.8.6.1481
- Xing, J.Z. and Wang, Y.G. (2013), "Free vibrations of a beam with elastic end restraints subject to a constant axial load", Arch. Appl. Mech., 83(2), 241-252. https://doi.org/10.1007/s00419-012-0649-x
- Young, D. and Felgar, R.P. (1949), Tables of Characteristic Functions Representing Normal Modes of Vibration of a Beam, The University of Texas Press, Austin, USA.
Cited by
- Free Vibrations of an Elastically Restrained Euler Beam Resting on a Movable Winkler Foundation vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/2724768