DOI QR코드

DOI QR Code

Structural identification based on incomplete measurements with iterative Kalman filter

  • Ding, Yong (School of Civil Engineering, Harbin Institute of Technology) ;
  • Guo, Lina (School of Civil Engineering, Harbin Institute of Technology)
  • 투고 : 2016.01.14
  • 심사 : 2016.05.11
  • 발행 : 2016.09.25

초록

Structural parameter evaluation and external force estimation are two important parts of structural health monitoring. But the structural parameter identification with limited input information is still a challenging problem. A new simultaneous identification method in time domain is proposed in this study to identify the structural parameters and evaluate the external force. Each sampling point in the time history of external force is taken as the unknowns in force evaluation. To reduce the number of unknowns for force evaluation the time domain measurements are divided into several windows. In each time window the structural excitation is decomposed by orthogonal polynomials. The time-variant excitation can be represented approximately by the linear combination of these orthogonal bases. Structural parameters and the coefficients of decomposition are added to the state variable to be identified. The extended Kalman filter (EKF) is augmented and selected as the mathematical tool for the implementation of state variable evaluation. The proposed method is validated numerically with simulation studies of a time-invariant linear structure, a hysteretic nonlinear structure and a time-variant linear shear frame, respectively. Results from the simulation studies indicate that the proposed method is capable of identifying the dynamic load and structural parameters fairly accurately. This method could also identify the time-variant and nonlinear structural parameter even with contaminated incomplete measurement.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, China Postdoctoral Science Foundation

참고문헌

  1. Asnachindaa, P., Pinkaewa, T. and Lamanb, J.A. (2008), "Multiple vehicle axle load identification from continuous bridge bending moment response", Eng. Struct., 30(10), 2800-2817. https://doi.org/10.1016/j.engstruct.2008.02.018
  2. Chatzi, E.N. and Smyth, A.W. (2009), "The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non-collocated heterogeneous sensing", Struct. Control Hlth. Monit., 16, 99-123. https://doi.org/10.1002/stc.290
  3. Chen, J. and Li, J. (2004), "Simultaneous identification of structural parameters and input time history from output-only measurements", Comput. Mech., 33(5), 365-374. https://doi.org/10.1007/s00466-003-0538-9
  4. Ching, J., Beck, J.L., Porter, K.A. and Shaikhutdinov, R. (2006), "Bayesian state estimation method for nonlinear systems and its application to recorded seismic response", J. Eng. Mech., 132(4), 396-410. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:4(396)
  5. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Diag., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  6. Feng, D.M., Sun, H. and Feng, M.Q. (2015), "Simultaneous identification of bridge structural parameters and vehicle loads", Comput. Struct., 157, 76-88. https://doi.org/10.1016/j.compstruc.2015.05.017
  7. Haykin, S., Sayed, A.H., Zeidler, J.R., Yee, P. and Wei, P.C. (1997), "Adaptive tracking of linear timevariant systems by extended RLS algorithms", IEEE Tran. Signal Pr., 45(5), 1118-1128. https://doi.org/10.1109/78.575687
  8. Hoshiya, M. and Saito, E. (1984), "Structural Identification by Extended Kalman Filter", J. Eng. Mech., 110, 1757-1770. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1757)
  9. Hou, S. and Ou, J.P. (2013), "An online substructure identification method for local structural health monitoring", Smart Mater. Struct., 22(9), 095017. https://doi.org/10.1088/0964-1726/22/9/095017
  10. Housner, G.W., Bergman, L.A. et al. (1997), "Structural control: Past, present, and future", J. Eng. Mech., ASCE, 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  11. Kerschen, G., Worden, K., Vakakis, A.F. and Golinval, J.C. (2006), "Past, present and future of nonlinear system identification in structural dynamics", Mech. Syst. Signal Pr., 20(3), 505-592. https://doi.org/10.1016/j.ymssp.2005.04.008
  12. Kerschen, G., Peeters, M., Golinval, J.C. and Vakakis, A.F. (2009), "Nonlinear normal modes, Part I: A useful framework for the structural dynamicist", Mech. Syst. Signal Pr., 23(1), 170-194. https://doi.org/10.1016/j.ymssp.2008.04.002
  13. Law, S.S. and Ding, Y. (2011), "Substructure methods for structural condition assessment", J. Sound Vib., 330(15), 3606-3619. https://doi.org/10.1016/j.jsv.2011.03.003
  14. Lei, Y., Liu, C. and Liu, L.J. (2014), "Identification of multistory shear buildings under unknown earthquake excitation using partial output measurements: numerical and experimental studies", Struct. Control Hlth. Monit., 21(5), 774-783.
  15. Li, J., Hao, H., Xia, Y. et al. (2015), "Damage assessment of shear connectors with vibration measurements and power spectral density transmissibility", Struct. Eng. Mech., 54(2), 257-289. https://doi.org/10.12989/sem.2015.54.2.257
  16. Lu, Z.R. and Law, S.S. (2007), "Identification of system parameters and input force from output only", Mech. Syst. Signal Pr., 21(5), 2099-2111. https://doi.org/10.1016/j.ymssp.2006.11.004
  17. Peeters, M., Viguie, R., Serandoura, G., Kerschen, G. and Golinval, J.C. (2009), "Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques", Mech. Syst. Signal Pr., 23(1), 195-216. https://doi.org/10.1016/j.ymssp.2008.04.003
  18. Sun, H. and Betti, R. (2014), "Simultaneous identification of structural parameters and dynamic input with incomplete output-only measurements", Struct. Control Hlth. Monit., 21(6), 868-889. https://doi.org/10.1002/stc.1619
  19. Sun, H., Feng, D.M., Liu, Y. and Feng, M.Q. (2015), "Statistical regularization for identification of structural parameters and external loadings using state space models", Comput. Aid. Civil Infrastr. Eng., 30(11), 843-858. https://doi.org/10.1111/mice.12169
  20. Tang, H.S., Xue, S.T., Chen, R. and Sato, T. (2006), "Online weighted LS-SVM for hysteretic structural system identification", Eng. Struct., 28(12), 1728-1735. https://doi.org/10.1016/j.engstruct.2006.03.008
  21. Wen, Y.K. (1980). "Equivalent linearization for hysteretic systems under random excitations", J. Appl. Mech., 47(1), 150-154. https://doi.org/10.1115/1.3153594
  22. Yang, J.N. and Lin, S. (2004), "On-line identification of non-linear hysteretic structures using an adaptive tracking technique", Int. J. Nonlin. Mech., 39(9), 1481-1491. https://doi.org/10.1016/j.ijnonlinmec.2004.02.010
  23. Yang, J.N., Lin, S., Huang H. and Zhou, L. (2006), "An adaptive extended Kalman filter for structural damage identification", Struct. Control Hlth. Monit., 13, 849-867. https://doi.org/10.1002/stc.84
  24. Yang, J.N., Pan, S. and Lin, S. (2007), "Least square estimation with unknown excitations for damage identification of structures", J. Eng. Mech., 133(1), 12-21. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:1(12)
  25. Zou, T., Tong, L. and Steve, G.P. (2000), "Vibration based model-dependent damage (delamination) identification and health monitoring for composite structures-a review", J. Sound Vib., 230(2), 357-378. https://doi.org/10.1006/jsvi.1999.2624
  26. Zhang, X.H., Zhu, S., Xu, Y.L. and Hong, X.J. (2011), "Integrated optimal placement of displacement transducers and strain gauges for better estimation of structural response", Int. J. Struct. Stab. Dyn., 11(3), 1-22.
  27. Zhang, F. and Zhu, D.M. (1996), "A new theoretical study of dynamic load identification based on generalized polynomial expansion", J. Nanjing Univ. Aeronaut. Astronaut., 28, 755-760.
  28. Zhu, X.Q. and Law, S.S. (2001), "Orthogonal function in moving loads identification on a multi-span bridge", J. Sound Vib., 245(2), 329-345. https://doi.org/10.1006/jsvi.2001.3577

피인용 문헌

  1. Sparsity-constrained Extended Kalman Filter concept for damage localization and identification in mechanical structures vol.21, pp.6, 2016, https://doi.org/10.12989/sss.2018.21.6.741
  2. Effective Heterogeneous Data Fusion procedure via Kalman filtering vol.22, pp.5, 2018, https://doi.org/10.12989/sss.2018.22.5.631
  3. Identification of Structural Parameters and Unknown Inputs Based on Revised Observation Equation: Approach and Validation vol.19, pp.12, 2016, https://doi.org/10.1142/s0219455419501566
  4. Output-only structural parameter identification with evolutionary algorithms and correlation functions vol.29, pp.3, 2020, https://doi.org/10.1088/1361-665x/ab6ce9