DOI QR코드

DOI QR Code

Experimental and numerical analysis of corrosion-induced cover cracking in reinforced concrete sample

  • Received : 2013.10.07
  • Accepted : 2016.04.20
  • Published : 2016.09.25

Abstract

Corrosion of embedded reinforcing bars is recognized as being the major cause of deterioration of reinforced concrete structures. With regard to maintenance strategies of concrete nuclear structures, the monitoring of cracking remains of primary importance. Recently, authors have developed a post-treatment technique to extract crack features from continuous computations. In this paper, such technique is applied to carry out a numerical analysis of an accelerated corrosion test. Obtained results allow highlighting specific propagation and failure mechanisms that characterize corrosion-induced cracking.

Keywords

Acknowledgement

Supported by : National Research Agency

References

  1. Adelaide, L., Richard, B., Ragueneau, F. and Cremona, C. (2010), "Thermodynamical admissibility of a set of constitutive equations coupling elasticity, isotropic damage and internal sliding", Compt. rendus meca., 338(3), 158-163. https://doi.org/10.1016/j.crme.2010.03.005
  2. AFNOR (2001), Testing hardened concrete. Part 6: Tensile splitting strength of test specimens, NF EN 12390-6.
  3. AFNOR (2003), Testing hardened concrete. Part 3: Compressive strength of test specimens, NF EN 12390-3.
  4. Andrade, C., Alonso, C. and Molina, F.J. (1993), "Cover cracking as a function of bar corrosion: Part IExperimental test", Mater. Struct., 26(8), 453-464. https://doi.org/10.1007/BF02472805
  5. Armstrong, P. and Frederick, C. (1966), "A mathematical representation of the multiaxial bauschinger effect (cegb report rd/b/n/731)", Berkeley Laboratories, R&D Department, CA.
  6. Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Method. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  7. Bentur, A. and Berke, N. (1998), "Steel corrosion in concrete, fundamentals and civil engineering practice", SPON.
  8. Bertolini, L., Elsener, B., Pedeferri, P. and Polder, R. (2004), "Corrosion of steel in concrete, Prevention, diagnosis and repair", Vch Verlagsgesellschaft Mbh.
  9. Broomfield, J.P. (1997), "Corrosion of steel in concrete, understanding, investigation and repair", E&FN SPON, London.
  10. Care, S. and Raharinaivo, A. (2007), "Influence of impressed current on the initiation of damage in reinforced mortar due to corrosion of embedded steel", Cement Concrete Res., 37(12), 1598-1612. https://doi.org/10.1016/j.cemconres.2007.08.022
  11. Care, S., Nguyen, Q.T., Beddiar, K. and Berthaud, Y. (2010), "Times to cracking in reinforced mortar beams subjected to accelerated corrosion tests", Mater. Struct., 43(1-2), 107-124. https://doi.org/10.1617/s11527-009-9474-2
  12. Delaplace, A. (2009), "Tensile damage response from discrete element virtual testing", Geomech. Geoeng., 4(1), 79-89. https://doi.org/10.1080/17486020902767339
  13. Delaplace, A. and Desmorat, R. (2007), "Discrete 3D model as complimentary numerical testing for anisotropic damage", Int. J. Fract., 148(2), 115-128. https://doi.org/10.1007/s10704-008-9183-9
  14. Delaplace, A. and Ibrahimbegovic, A. (2006), "Performance of time-stepping schemes for discrete models in fracture dynamic analysis", Int. J. Numer. Method. Eng., 65(9), 1527-1544. https://doi.org/10.1002/nme.1509
  15. Dolbow, J.O.H.N. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Method. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  16. Dragon, A. and Mroz, Z. (1979), "A continuum model for plastic-brittle behaviour of rock and concrete", Int. J. Eng. Sci., 17(2), 121-137. https://doi.org/10.1016/0020-7225(79)90058-2
  17. Fremond, M. and Nedjar, B. (1995), "Damage in concrete: the unilateral phenomenon", Nucl. Eng. Des., 156(1), 323-335. https://doi.org/10.1016/0029-5493(94)00970-A
  18. Grassl, P. and Jirasek, M. (2006), "Damage-plastic model for concrete failure", Int. J. Solid. Struct., 43(22), 7166-7196. https://doi.org/10.1016/j.ijsolstr.2006.06.032
  19. Jason, L., Huerta, A., Pijaudier-Cabot, G. and Ghavamian, S. (2006), "An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model", Comput. Method. Appl. Mech. Eng., 195(52), 7077-7092. https://doi.org/10.1016/j.cma.2005.04.017
  20. Jirasek, M. and Zimmermann, T. (1998), "Rotating crack model with transition to scalar damage", J. Eng. Mech., 124(3), 277-284. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(277)
  21. Jirasek, M. and Zimmermann, T. (2001), "Embedded crack model: I. Basic formulation", Int. J. Numer. Method. Eng., 50(6), 1269-1290. https://doi.org/10.1002/1097-0207(20010228)50:6<1269::AID-NME11>3.0.CO;2-U
  22. Jirasek, M. and Zimmermann, T. (2001b), "Embedded crack model. Part ii: Combination with smeared cracks", Int. J. Numer. Method. Eng., 50(6), 1291-1305. https://doi.org/10.1002/1097-0207(20010228)50:6<1291::AID-NME12>3.0.CO;2-Q
  23. La Borderie, C., Mazars, J. and Pijaudier-Cabot, G. (1992), "Response of plain and reinforced concrete structures under cyclic loadings", Special Pub., 134, 147-172.
  24. Lemaitre, J., Chaboche, J.L. and Germain, P. (1985), Mecanique des materiaux solides, Dunod.
  25. Mattews, S., Sarkkinen, M. and Morlidge, J. (2007), "Conrepnet: Performance-based approach to the remediation of reinforced concrete structures: Achieving durable repaired concrete structures", J. Build. Appraisal, 3(1), 6-20. https://doi.org/10.1057/palgrave.jba.2950063
  26. Mazars, J. (1989), "Continuum damage theory: application to concrete", J. Eng. Mech., 115(2), 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
  27. Mazars, J., Berthaud, Y. and Ramtani, S. (1990), "The unilateral behaviour of damaged concrete", Eng. Fract. Mech., 35(4), 629-635. https://doi.org/10.1016/0013-7944(90)90145-7
  28. Mehta, P., Monteiro, P. and Ebrary, I. (2006), Concrete microstructure, properties and materials, McGraw-Hill New York.
  29. Moukarzel, C. and Herrmann, H.J. (1992), "A vectorizable random lattice", J. Stat. Phys., 68(5-6), 911-923. https://doi.org/10.1007/BF01048880
  30. Nguyen, Q., Care, S., Millard, A. and Berthaud, Y. (2007), "Analyse de la fissuration du beton arme en corrosion acceleree", Comptes Rendus de l'Academie des Sciences: Mecanique, 335(2), 99-104. https://doi.org/10.1016/j.crme.2007.01.005
  31. Oliver, J. (1996), "Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: Fundamentals", Int. J. Numer. Method. Eng., 39(21), 3575-3600. https://doi.org/10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E
  32. Oliver-Leblond, C., Delaplace, A., Ragueneau, F. and Richard, B. (2013), "Non-intrusive global/local analysis for the study of fine cracking", Int. J. Numer. Anal. Method. Geomech., 37(8), 973-992. https://doi.org/10.1002/nag.2155
  33. Pensee, V., Kondo, D. and Dormieux, L. (2002), "Micromechanical analysis of anisotropic damage in brittle materials", J. Eng. Mech., 128(8), 889-897. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:8(889)
  34. Pijaudier-Cabot, G. and Bazant, Z.P. (1987), "Nonlocal damage theory", J. Eng. Mech., 113(10), 1512-1533. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:10(1512)
  35. Ragueneau, F., Dominguez, N. and Ibrahimbegovic, A. (2006), "Thermodynamic based interface model for cohesive brittle materials: Application to bond slip in RC structures", Comput. Method. Appl. Mech. Eng., 195(52), 7249-7263. https://doi.org/10.1016/j.cma.2005.04.022
  36. Ragueneau, F., La Borderie, C. and Mazars, J. (2000), "Damage model for concrete-like materials coupling cracking and friction, contribution towards structural damping: rst uniaxial application", Mech. Cohes. Frict. Mater., 5, 607625.
  37. Richard, B., Delaplace, A., Cremona, C. and Ragueneau, F. (2010), "Combining finite/discrete element models: a post-processing tool for fine cracks in concrete structures", Fract. Mech. Concrete Concrete Struct.
  38. Richard, B., Quiertant, M., Bouteiller, V., Adelaide, L., Tailhan, J.L. and Cremona, C. (2012), "Influence of accelerated corrosion on the reinforced cover concrete cracking behavior: experimental and numerical study", Eur. J. Envir. Civil Eng., 16(3-4), 450-459. https://doi.org/10.1080/19648189.2012.667997
  39. Richard, B., Ragueneau, F., Cremona, C. and Adelaide, L. (2010b), "Isotropic continuum damage mechanics for concrete under cyclic loading: stiffness recovery, inelastic strains and frictional sliding", Eng. Fract. Mech., 77(8) 1203-1223. https://doi.org/10.1016/j.engfracmech.2010.02.010
  40. Richard, B., Ragueneau, F., Cremona, C., Adelaide, L. and Tailhan, J.L. (2010), "A three-dimensional steel/concrete interface model including corrosion effects", Eng. Fract. Mech., 77(6), 951-973. https://doi.org/10.1016/j.engfracmech.2010.01.017
  41. Rots, J. (1991), "Smeared and discrete representations of localized fracture", Int. J. Fract., 51, 45-59. https://doi.org/10.1007/BF00020852
  42. Schlangen, E. and Garbozci, E.J. (1997), "Fracture simulations of concrete using lattice models: Computational aspects", Eng. Fract. Mech., 57, 319-332. https://doi.org/10.1016/S0013-7944(97)00010-6
  43. Tilly, G. and Jacobs, J. (2007), "Concrete repairs, Performance in service and current practice", CONREPNET, IHS BRE press.
  44. Van Mier, J.G.M., Van Vliet, M.R.A. and Wang, T.K. (2002), "Fracture mechanism in particle composites: statistical aspects in lattice type analysis", Mech. Mater., 34(11), 705-724. https://doi.org/10.1016/S0167-6636(02)00170-9
  45. Woestyn, S., Delaplace, A. and Koechlin, P. (2006), "Analysis of the dynamical failure of concrete by mean of a discrete model", Revue Europeenne de Genie Civil, 10, 1281-1308. https://doi.org/10.1080/17747120.2006.9692916

Cited by

  1. A Parameter Sensitivity Analysis of the Effect of Rebar Corrosion on the Stress Field in the Surrounding Concrete vol.2017, 2017, https://doi.org/10.1155/2017/9858506
  2. Damage Evolution of RC Beams Under Simultaneous Reinforcement Corrosion and Sustained Load vol.12, pp.4, 2019, https://doi.org/10.3390/ma12040627
  3. Mesoscale model for cracking of concrete cover induced by reinforcement corrosion vol.22, pp.1, 2016, https://doi.org/10.12989/cac.2018.22.1.053
  4. Phase-field simulations of cover cracking in corroded RC beams vol.33, pp.None, 2021, https://doi.org/10.1016/j.prostr.2021.10.045