Acknowledgement
Supported by : The National Science Fund for Distinguished Young Scholars, The National Natural Science Foundation of China
References
- Bencardino, F., Rizzuti, L., Spadea, G. et al. (2010), "Experimental evaluation of fiber reinforced concrete fracture properties", Compos. Part B Eng., 41(1), 17-24. https://doi.org/10.1016/j.compositesb.2009.09.002
- Carmona, J.R., Porras, R., Yu, R.C. et al. (2013), "A fracture mechanics model to describe the buckling behavior of lightly reinforced concrete columns", Eng. Struct., 49(2), 588-599. https://doi.org/10.1016/j.engstruct.2012.11.024
- DL/T5332-2005 (2005), Norm for fracture test of hydraulic concrete, China Electric Power Press, Beijing, China.
- Englekirk, R.E. (2010), "Effective stiffness of reinforced concrete columns", ACI Struct. J., 107(3), 372-381.
- Fan, X.Q. and Hu, S.W. (2013), "Influence of crack initiation length on fracture behaviors of reinforced concrete", Appl. Clay Sci., 79, 25-29. https://doi.org/10.1016/j.clay.2013.02.026
- Hu, S.W. and Xu, A.Q. (2015), "Effect analysis on fracture morphology of non-standard concrete wedge splitting tests by different height to width ratio", J. Chin. Ceramic Soc., 43(10), 1492-1499.
- Hu, S.W., Mi, Z.X. and Lu, J. (2012), "Effect of crack-depth ratio on double-k fracture parameter of reinforced concrete", Appl. Mech. Mater., 226, 937-941, Trans Tech Publications.
- Kang, S.T., Lee, Y., Park, Y.D. and Kim, J.K. (2010), "Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber", Compos. Struct., 92(1), 61-71. https://doi.org/10.1016/j.compstruct.2009.06.012
- Lu, W.Y., Lin, I.J. and Yu, H.W. (2013), "Shear strength of reinforced concrete deep beams", ACI Struct. J., 110(4), 671-680.
- Maji, A., Orozco, A. and Acree, R. (2001), "Fracture analysis of FRP reinforced concrete beams", J. Eng. Mech., 127(6), 620-624. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:6(620)
- Sagaseta, J. and Vollum, R.L. (2011), "Influence of aggregate fracture on shear transfer through cracks in reinforced concrete", Mag. Concrete Res., 63, 119-137. https://doi.org/10.1680/macr.9.00191
- Sener, S., Barr, B.I.G. and Abusiaf, H.F. (2004), "Size effect in axially loaded reinforced concrete columns", J. Struct. Eng., 130(4), 662-670. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(662)
- Sih, G.C. (1973), "Handbook of stress-intensity factors, institute of fracture and solid mechanics, Lehigh University, methods of analysis and solutions of crack problems, Springer Science & Business Media.
- Srawley, J.E. and Gross, B.(1972), "Stress intensity factors for bend and compact specimens", Eng. Fract. Mech., 4(3), 587-589. https://doi.org/10.1016/0013-7944(72)90069-0
- Tada, H., Paris, P.C. and Irwin, G.R. (2000), The analysis of cracks handbook, ASME Press, New York, NY, USA.
- Vecchio, F.J. (2000), "Disturbed stress field model for reinforced concrete: formulation", J. Struct. Eng., 126(9), 1070-1077. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1070)
- Xu, S.L. and Reinhardt, H.W.(1999), "Determination of double- K criterion for crack propagation in quasibrittle fracture, Part III: Compact tension specimens and wedge splitting specimens", Int. J. Fract., 98(2), 179-193. https://doi.org/10.1023/A:1018788611620
- Zhang, X.X., Elazim, A.M.A., Ruiz, G. et al. (2014), "Fracture behaviour of steel fibre-reinforced concrete at a wide range of loading rates", Int. J. Impact Eng., 71(6), 89-96. https://doi.org/10.1016/j.ijimpeng.2014.04.009
Cited by
- Influence of Defects on Reinforced Concrete Fracture Performance in Improved Wedge Splitting Tests vol.47, pp.2, 2018, https://doi.org/10.1520/JTE20170176
- Computer modeling of crack propagation in concrete retaining walls: A case study vol.19, pp.5, 2016, https://doi.org/10.12989/cac.2017.19.5.509
- Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.445
- Simulation of crack initiation and propagation in three point bending test using PFC2D vol.66, pp.4, 2016, https://doi.org/10.12989/sem.2018.66.4.453
- Experimental and numerical simulating of the crack separation on the tensile strength of concrete vol.66, pp.5, 2016, https://doi.org/10.12989/sem.2018.66.5.569
- Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D vol.67, pp.5, 2016, https://doi.org/10.12989/sem.2018.67.5.505
- The effect of ball size on the hollow center cracked disc (HCCD) in Brazilian test vol.22, pp.4, 2016, https://doi.org/10.12989/cac.2018.22.4.373
- PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test vol.68, pp.4, 2016, https://doi.org/10.12989/sem.2018.68.4.497
- Effect of transversely bedding layer on the biaxial failure mechanism of brittle materials vol.69, pp.1, 2016, https://doi.org/10.12989/sem.2019.69.1.011
- The continuous-discontinuous Galerkin method applied to crack propagation vol.23, pp.4, 2016, https://doi.org/10.12989/cac.2019.23.4.235
- Influence of coarse aggregate properties on specific fracture energy of steel fiber reinforced self compacting concrete vol.9, pp.2, 2016, https://doi.org/10.12989/acc.2020.9.2.173
- Studies on effect of steel fiber and coarse aggregate on fracture properties of self compacting concrete using wedge splitting test vol.11, pp.6, 2016, https://doi.org/10.1108/ijsi-11-2019-0118