Acknowledgement
Supported by : National Natural Science Fund of China, China Railway Engineering Corporation
References
- Ahern, A., Verbist, G., Weaire, D., Phelan, R. and Fleurent, H. (2005), "The conductivity of foams: a generalisation of the electrical to the thermal case", Colloid Surface A: Physicochem. Eng. Aspects, 263, 275-279. https://doi.org/10.1016/j.colsurfa.2005.01.026
- Aldridge, D. (2000), "Foamed concrete for highway bridge works, Seminar notes on foamed concrete:properties, applications and potential", University of Dundee, Scotland, 33-41.
- Bhattacharya, A., Calmidi, V. and Mahajan, R. (2002), "Thermophysical properties of high porosity metal foams", Int. J. Heat Mass Transfer, 45(5), 1017-1031. https://doi.org/10.1016/S0017-9310(01)00220-4
- Bouvard, D., Chaix, J.M., Dendievel, R., Fazekas, A., Letang, J.M., Peix, G. and Quenard, D. (2007), "Characterization and simulation of microstructure and properties of EPS lightweight concrete", Cement and Concrete Res., 37(12), 1666-1673. https://doi.org/10.1016/j.cemconres.2007.08.028
- Collishaw, P.G. and Evans, J.R.G. (1994), "An assessment of expressions for the apparent thermal conductivity of cellular materials", J. Mater. Sci., 29(9), 2261-2273. https://doi.org/10.1007/BF00363413
- EN 12664 (2001), Thermal performance of building materials and products -determination of thermal resistance by means of guarded hot plate and heat flow meter methods-dry and moist products of medium and low thermal resistance, European Committee for Standardization.
- EN 12939 (2000), Thermal performance of building materials and products -determination of thermal resistance by means of guarded hot plate and heat flow meter methods -thick products of high and medium thermal resistance, European Committee for Standardization.
- Esmaily, H. and Nuranian, H. (2012), "Non-autoclaved high strength cellular concrete from alkali activated slag", Constr. Build. Mater., 26(1), 200-206. https://doi.org/10.1016/j.conbuildmat.2011.06.010
- Fu, X. and Chung, D. (1999), "Effect of admixtures on thermal and thermomechanical behavior of cement paste", ACI Mater. J., 96(4), 455-61.
- Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids, (second ed.), Cambridge University Press, Cambridge, UK.
- Glicksmann, L.R. and Schuetz, M.A. (1994), Low density cellular plastics, Chapman & Hall, London, UK.
- Hashin, Z. and Shtrikman, S. (1962), "A variational approach to the theory of the effective magnetic permeability of multiphase materials", J. Appl. Phys., 33(10), 3125-3131. https://doi.org/10.1063/1.1728579
- ISO 8990 (1994), Thermal insulation-determination of steady-state thermal transmission propertiescalibrated and guarded hot box, International Standard Organization.
- Jones, M.R. and McCarthy, A. (2005), "Behavior and assessment of foamed concrete for fill and highway applications", Proceedings of an International Conference on Uses of Foamed Concrete Global Construction: Ultimate Concrete Opportunities, Dundee, Scotland, UK.
- Kearsley, E.P. and Mostert, H.F. (2005), "Opportunities for expanding the use of foamed concrete in the construction industry", Proceedings of an International Conference on Uses of Foamed Concrete Global Construction: Ultimate Concrete Opportunities, Dundee, Scotland, UK.
- Kuhn, J., Ebert, H., Arduini-Schuster, M.C., Buttner, D. and Fricke, J. (1992), "Thermal transport in polystyrene and polyurethane foam insulations", Int. J. Heat Mass Transfer, 35(7), 1795-1801. https://doi.org/10.1016/0017-9310(92)90150-Q
- Landauer, R. (1952), "The electrical resistance of binary metallic mixtures", J. Appl. Phys., 23(7), 779-784. https://doi.org/10.1063/1.1702301
- Litovsky, E., Shapiro, M. and Shavit, A. (1996), "Gas pressure and temperature dependences of thermal conductivity of porous ceramic materials: Part 2, refractories and ceramics with porosity exceeding 30%", J. Am. Ceramic Soc., 79(5), 1366-1376. https://doi.org/10.1111/j.1151-2916.1996.tb08598.x
- Lu, T.J. and Chen, C. (1999), "Thermal transport and fire retardance properties of cellular aluminium alloys", Acta Mater., 47(5), 1469-1485. https://doi.org/10.1016/S1359-6454(99)00037-3
- Lv, X., Cao, M., Li, Y., Li, X., Li, Q., Tang, R., Wang, Q. and Duan, Y. (2015), "A new absorbing foam concrete: preparation and microwave absorbing properties", Adv. Concrete Constr., 3(2),103-111. https://doi.org/10.12989/acc.2015.3.2.103
- Narayanan, N. and Ramamurthy, K. (2000) "Structure and properties of aerated concrete: a review", Cement Concrete Compos., 22(5), 321-329 https://doi.org/10.1016/S0958-9465(00)00016-0
- Nooraini, M.Z., Ismail, A.R. and Ahmad Mujahid, A.Z. (2009), "Foamed concrete: potential application in thermal insulation, Malaysian Technical Universities Conference on Engineering and Technology (MUCEET), Kuantan, Pahang, Malaysian, June.
- Othuman Mydin, M.A. and Wang, Y.C. (2012), "Thermal and mechanical properties of lightweight foamed concrete at elevated temperatures", Mag. Concrete Res., 64(3), 213-224. https://doi.org/10.1680/macr.10.00162
- Placido, E., Arduini-Schuster, M.C. and Kuhn, J. (2005), "Thermal properties predictive model for insulating foams", Infrared Phys. Techn., 46(3), 219-231. https://doi.org/10.1016/j.infrared.2004.04.001
- Russell, H.W. (1935), "Principles of heat flow in porous insulators", J. Am. Ceram. Soc., 18(1-12), 1-5. https://doi.org/10.1111/j.1151-2916.1935.tb19340.x
- Scheffler, M. and Paolo, C. (2005), Cellular ceramics structure, manufacturing, properties and applications, WILEY-VCH, Weinheim, Germany.
- She, W., Chen, Y., Zhang, Y. and Jones, M.R. (2013), "Characterization and simulation of microstructure and thermal properties of foamed concrete", Constr. Build. Mater., 47, 1278-1291. https://doi.org/10.1016/j.conbuildmat.2013.06.027
- Skochdopole, R.E. (1961), "The thermal conductivity of foam plastics", Eng. Progress, 57.
- Tanacan, L., Ersoy, H.Y. and Arpacioglu, U. (2009), "Effect of high temperature and cooling conditions on aerated concrete properties", Constr. Build. Mater., 23(3), 1240-1248. https://doi.org/10.1016/j.conbuildmat.2008.08.007
- Wang, X.S., Wu, B.S. and Wang, Q.Y. (2005), "Online SEM investigation of microcrack characteristics of concretes at various temperatures", Cement Concrete Res., 35(7), 1385-1390. https://doi.org/10.1016/j.cemconres.2004.07.015
- Wiener, O. (1904), "Lamellare doppelbrechung", Phys. Zeitschrift, 5(12), 332-338.
- Xia, Y., Yan, Y. and Hu, Z. (2013), "Utilization of circulating fluidized bed fly ash in preparingnonautoclaved aerated concrete production", Constr. Build. Mater., 47, 1461-1467. https://doi.org/10.1016/j.conbuildmat.2013.06.033
- Yang, L., Yan, Y. and Hu, Z. (2013), "Utilization of phosphogypsum for the preparation of non-autoclaved aerated concrete", Constr. Build. Mater., 44, 600-606. https://doi.org/10.1016/j.conbuildmat.2013.03.070
- Yesilata, B. and Turgut, P. (2007), "A simple dynamic measurement technique for comparing thermal insulation performances of anisotropic building materials", Ener. Build., 39(9), 1027-34. https://doi.org/10.1016/j.enbuild.2006.11.007
- Zarr, R.R. (2001), "History of testing heat insulators at the national institute of standards and technology", ASHRAE Transact., 107(2), 1-11.
Cited by
- Effect of thermal-induced microcracks on the failure mechanism of rock specimens vol.22, pp.1, 2018, https://doi.org/10.12989/cac.2018.22.1.093
- Fundamental Properties and Thermal Transferability of Masonry Built by Autoclaved Aerated Concrete Self-Insulation Blocks vol.13, pp.7, 2016, https://doi.org/10.3390/ma13071680
- Mechanical Behaviour of Cement-Bound Gravels by Experiment-Based 3D Multi-Scale Modelling: Application to Non-Hazardous Waste Incineration Bottom Ashes Aggregates for Use in Road Engineering vol.54, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/jera.54.71
- Thermal conductivity evolution of early-age concrete under variable curing temperature: Effect mechanism and prediction model vol.319, pp.None, 2016, https://doi.org/10.1016/j.conbuildmat.2021.126078