DOI QR코드

DOI QR Code

Variation of Optimum Operational pH in Partial Nitritation

암모니아 폐수의 부분아질산화에서 최적 운전 pH의 변동

  • Bae, Wookeun (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Khan, Hammad (Department of Civil and Environmental Engineering, Hanyang University)
  • 배우근 (한양대학교 건설환경공학과) ;
  • Received : 2016.02.26
  • Accepted : 2016.03.25
  • Published : 2016.05.31

Abstract

Nitrite accumulation is essential for constructing an anammox process. As the pH in the reactor exerts a complicated and strong influence on the reaction rate, we investigated its effects upon treatment of an ammonic wastewater (2,000 mgN/L) through modeling and experiment. The modeling results indicated that the reaction stability is strongly affected by pH, which results in a severe reduction of the 'stable region' of operation under alkaline environments. On a coordinate of the total ammonia nitrogen (TAN) concentration vs. pH, the maximal stable reaction rates and the maximal nitrite accumulation potentials could be found on the 'stability ridge' that separates the stable region from the unstable region. We achieved a stable and high ammonia oxidation rate (${\sim}6kgN/m^3-d$) with a nitrite accumulation ratio of ~99% when operated near the 'stability ridge'. The optimum pH that can be observed in experiments varies with the TAN concentrations utilized, although the intrinsic optimum pH is fixed. The direction of change is that the optimum operational pH falls as the TAN concentration increases, which is in excellent accordance with the observations in the literature. The optimum operational pH for 95% nitritation was predicted to be ~8.0, whereas it was ~7.2 for 55% partial nitritation to produce an anammox feed in our experimental conditions.

아질산화 반응을 통한 nitrite 축적은 단축질소제거 혹은 anammox 공정 수립을 위해 필수적이고 이 반응의 속도가 전체 질소제거공정의 효율에 큰 영향을 미칠 수 있다. 본 연구는 부유 미생물 연속류 반응기에서 pH 농도가 암모니아 폐수(2,000 mgN/L) 처리에 주는 복잡하고 다양한 영향 들을 modeling과 실험을 통해 종합적으로 분석하였다. modeling 연구 결과 반응의 안정성(stability)은 pH에 의해 지대한 영향을 받으며, free ammonia 저해가 심해지는 알칼리성 환경일수록 안정적 운전 영역(stable region)은 축소되었다. 기질과 pH의 좌표 상에서 stable region과 unstable region을 가르는 경계(stability ridge) 근처에서 안정적인 최대반응속도를 얻을 수 있고, 이 운전조건에서 아질산 축적 가능성도 최대가 되었다. stability ridge 근처의 조건에서 반응기를 운전한 결과 아질산화속도는 안정적으로 약 $6kgN/m^3-d$까지 얻을 수 있었고, 아질산축적율은 약 99% 이었다. 그러나 unstable region에서는 부하증가를 통한 반복된 교란 결과 유출수 암모니아 농도가 회복 불가능한 상태로 상승하였다. Modeling 결과 고유(intrinsic) 최적 pH 값을 고정하여도 실험에서 관찰되는 최적 운전 pH는 사용 기질의 농도가 높을수록 낮아지는 것으로 나타났으며, 이는 문헌에서 보고된 경향과 일치 하였다. 본 연구의 modeling 조건에서 95% 아질산화(5%는 암모니아로 잔존)를 위한 최적 운전 pH는 ~8.0인 것으로 예측되었으나, anammox 유입수 생산을 위해 55% 아질산화하려 할 때의 최적 운전 pH는 ~7.2로 낮아 졌다.

Keywords

References

  1. Alleman, J. E. and Irvine, R. L., "Nitrification in the sequencing batch biological reator," Water Pollut. Control Fed., 52 (11), 2747-2754(1980).
  2. Bae, W., Baek, S., Chung, J. and Lee, Y., "Optimal operational factors for nitrite accumulation in batch reactors," Biodegradation., 12(5), 359-366(2001). https://doi.org/10.1023/A:1014308229656
  3. Chung, J. and Bae, W., "Nitrite reduction by a mixed culture under conditions relevant to shortcut biological nitrogen removal," Biodegrad., 13(3), 163-170(2002). https://doi.org/10.1023/A:1020896412365
  4. Hellinga, C., Schellen, A. A. J. C., Mulder, J. W., van Loosdrecht, M. C. M. and Heijnen, J. J., "The sharon process: An innovative method for nitrogen removal from ammonium-rich waste water," Water Sci. Technol., 37(9), 135-142(1998).
  5. Park, S. and Bae, W., "Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid," Proc. Biochem., 44(6), 631-640(2009). https://doi.org/10.1016/j.procbio.2009.02.002
  6. Blackburne, R., Yuan, Z. and Keller, J., "Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor," Biodegrad., 19(2), 303-312(2008). https://doi.org/10.1007/s10532-007-9136-4
  7. Mulder, A., van de Graaf, A. A., Robertson, L. A. and Kuenen, J. G., "Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor," FEMS Microbiol. Ecol., 16(3), 177-183(1995). https://doi.org/10.1111/j.1574-6941.1995.tb00281.x
  8. van der Star, W. R. L., Abma, W. R., Blommers, D., Mulder, J. W., Tokutomi, T., Strous, M., Picioreanu, C. and van Loosdrecht, M. C. M., "Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam," Water Res., 41(18), 4149-4163 (2007). https://doi.org/10.1016/j.watres.2007.03.044
  9. Chung, J., Shim, H., Park, S. J., Kim, S. J. and Bae, W., "Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process," Bioprocess and Biosystems Eng., 28(4), 275-282(2006). https://doi.org/10.1007/s00449-005-0035-y
  10. Hanaki, K., Wantawin, C. and Ohgaki, S., "Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor," Water Res., 24(3), 297-302(1990). https://doi.org/10.1016/0043-1354(90)90004-P
  11. Hellinga, C., van Loosdrecht, M. C. M. and Heijnen, J. J., "Model Based Design of a Novel Process for Nitrogen Removal from Concentrated Flows," Math. and Computer Modelling of Dynamical Syst., 5(4), 351-371(1999). https://doi.org/10.1076/mcmd.5.4.351.3678
  12. Chung, J., Bae, W., Lee, Y. W. and Rittmann, B. E., "Shortcut biological nitrogen removal in hybrid biofilm/suspended growth reactors," Proc. Biochem., 42(3), 320-328(2007). https://doi.org/10.1016/j.procbio.2006.09.002
  13. Khan, H. and Bae, W., "Optimized operational strategies based on maximum nitritation, stability, and nitrite accumulation potential in a continuous partial nitritation reactor," Proc. Biochem., (in Press)(2016).
  14. Campos, J. L., Garrido-Fernandez, J. M., Mendez, R. and Lema, J. M., "Nitrification at high ammonia loading rates in an activated sludge unit," Bioresour. Technol., 68(2), 141-148(1999). https://doi.org/10.1016/S0960-8524(98)00141-2
  15. Ganigue, R., Gabarro, J., Sanchez-Melsio, A., Ruscalleda, M., Lopez, H., Vila, X., Colprim, J. and Balaguer, M. D., "Long-term operation of a partial nitritation pilot plant treating leachate with extremely high ammonium concentration prior to an anammox process," Bioresour. Technol., 100(23), 5624-5632(2009). https://doi.org/10.1016/j.biortech.2009.06.023
  16. Yamamoto, T., Takaki, K., Koyama, T. and Furukawa, K., "Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox," Bioresour. Technol., 99(14), 6419-6425(2008). https://doi.org/10.1016/j.biortech.2007.11.052
  17. Suzuki, I., Dular, U. and Kwok, S. C., "Ammonia or Ammonium Ion as Substrate for Oxidation by Nitrosomonas europaea Cells and Extracts," J. Bacteriol., 120(1), 556-558(1974).
  18. Van Hulle, S. W. H., Volcke, E. I. P., Teruel, J. L., Donckels, B., van Loosdrecht, M. C. M. and Vanrolleghem, P. A., "Influence of temperature and pH on the kinetics of the Sharon nitritation process," J. Chem. Technol. Biotechnol., 82(5), 471-480(2007). https://doi.org/10.1002/jctb.1692
  19. Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. and Srinath, E. G., "Inhibition of nitrification by ammonia and nitrous acid," J. Water Pollut. Control Fed., 48(5), 835-852(1976).
  20. Vadivelu, V. M., Yuan, Z., Fux, C. and Keller, J., "The Inhibitory Effects of Free Nitrous Acid on the Energy Generation and Growth Processes of an Enriched Nitrobacter Culture," Environ. Sci. Technol., 40(14), 4442-4448(2006). https://doi.org/10.1021/es051694k
  21. Wang, Q., Ye, L., Jiang, G., Hu, S. and Yuan, Z., "Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway," Water Res., 55, 245-255(2014). https://doi.org/10.1016/j.watres.2014.02.029
  22. Henze, M., Wastewater treatment: biological and chemical processes, Springer-Verlag(1995).
  23. Zwietering, M. H., de Wit, J. C., Cuppers, H. G. A. M. and van't Riet, K., "Modeling of Bacterial Growth with Shifts in Temperature," Appl. Environ. Microbiol., 60(1), 204-213(1994).
  24. Magri, A., Corominas, L., Lopez, H., Campos, E., Balaguer, M., Colprim, J. and Flotats, X., "A model for the simulation of the SHARON process: pH as a key factor," Environ. Technol., 28(3), 255-265(2007). https://doi.org/10.1080/09593332808618791
  25. Quinlan, A. V., "Prediction of the optimum pH for ammonia-n oxidation by nitrosomonas Europaea in well-aerated natural and domestic-waste waters," Water Res., 18(5), 561-566(1984). https://doi.org/10.1016/0043-1354(84)90204-5
  26. Rittmann, B. E. and McCarty, P. L., Environmental biotechnology: principles and applications, McGraw-Hill, Boston(2001).
  27. Park, S., Bae, W., Chung, J. and Baek, S. C., "Empirical model of the pH dependence of the maximum specific nitrification rate," Proc. Biochem., 42(12), 1671-1676(2007). https://doi.org/10.1016/j.procbio.2007.09.010
  28. Ge, S., Wang, S., Yang, X., Qiu, S., Li, B. and Peng, Y., "Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review," Chemosphere., 140, 85-98(2015). https://doi.org/10.1016/j.chemosphere.2015.02.004
  29. Shieh, W., K. and La Motta, E., J., "Effect of initial substrate concentration on the rate of nitrification in a batch experiment," Biotechnol. Bioeng., 21(2), 201-211(1979). https://doi.org/10.1002/bit.260210207
  30. Jin, C., "Development of high-efficiency nitrogen removal system by autotrophic bacteria" (in Korean), Advanced technology program for environmental industry, Project number: 2013001340001 (Final Report), Korea Environmental Industry & Technology Institute(2016).