Development and Research into Functional Foods from Hydrolyzed Whey Protein Powder with Sialic Acid as Its Index Component - I. Repeated 90-day Oral Administration Toxicity Test using Rats Administered Hydrolyzed Whey Protein Powder containing Normal Concentration of Sialic Acid (7%) with Enzyme Separation Method -

Sialic Acid를 지표성분으로 하는 유청가수분해단백분말의 기능성식품 개발연구 - I. 효소분리로 7% Siailc Acid가 표준적으로 함유된 유청가수분해단백분말(7%)의 랫드를 이용한 90일 반복경구투여 독성시험 평가 연구 -

  • Received : 2016.06.01
  • Accepted : 2016.06.22
  • Published : 2016.06.30

Abstract

We herein performed animal safety assessment in accordance with Good Laboratory Practice (GLP) regulations with the aim of developing sialic acid from glycomacropeptide (hereafter referred to as "GMP") as an index ingredient and functional component in functional foods. GMP is a type of whey protein derived from milk and a safe food, with multiple functions, such as antiviral activity. A test substance was produced containing 7% (w/w) sialic acid and mostly-hydrolyzed whey protein (hereafter referred to as "7%-GNANA") by enzymatic treatment of substrate GMP. The maximum intake test dose level was selected based on 5,000 mg/kg/day dose set for male NOEL (no-observed-effect-level) and female NOAEL (no-observed-adverse-effect-level) determined by a dose-range finding (DRF) test (GLP Center of Catholic University of Daegu, Report No. 15-NREO-001) that was previously conducted with the same test substance. To evaluate the toxicity of a repeated oral dose of the test substance in connection with the previous DRF study, 1,250, 2,500, and 5,000 mg/kg of the substance were administered by a probe into the stomachs of 6-week-old SPF Sprague-Dawley male and female rats for 90 d. Each test group consisted of 10 male and 10 female rats. To determine the toxicity index, all parameters, such as observation of common signs; measurements of body weight and food consumption; ophthalmic examination; urinalysis, electrolyte, hematological, and serum biochemical examination; measurement of organ weights during autopsy; and visual and histopathological examinations were conducted according to GLP standards. After evaluating the results based on the test toxicity assessment criteria, it was determined that NOAEL of the test substance, 7%-GNANA, was 5,000 mg/kg/day, for both male and female rats. No animal death was noted in any of the test groups, including the control group, during the study period, and there was no significant difference associated with test substance, as compared with the control group, with respect to general symptoms, body weight changes, food consumption, ophthalmic examination, urinalysis, hematological and serum biochemical examination, and electrolyte and blood coagulation tests during the administration period (P<0.05). As assessed by the effects of the test substance on organ weights, food consumption, autopsy, and histopathological safety, change in kidney weight as an indicator of male NOAEL revealed up to 20% kidney weight increase in the high-dose group (5,000 mg/kg/day) compared with the change in the control group. However, it was concluded that this effect of the test substance was minor. In the case of female rats, reduction of food consumption, increase of kidney weight, and decrease of thymus weight were observed in the high-dose group. The kidney weight increased by 10.2% (left) and 8.9% (right) in the high-dose group, with a slight dose-dependency compared with that of the control group. It was observed that the thymus weight decreased by 25.3% in the high-dose group, but it was a minor test substance-associated effect. During the autopsy, botryoid tumor was detected on the ribs of one subject in the high-dose group, but we concluded that the tumor has been caused by a naturally occurring (non-test) substance. Histopathological examination revealed lesions on the kidney, liver, spleen, and other organs in the low-dose test group. Since these lesions were considered a separate phenomenon, or naturally occurring and associated with aging, it was checked whether any target organ showed clear symptoms caused by the test substance. In conclusion, different concentrations of the test substance were fed to rats and, consequently, it was verified that only a minor effect was associated with the test substance in the high-dose (5,000 mg/kg/day) group of both male and female rats, without any other significant effects associated with the test substance. Therefore, it was concluded that NOAEL of 7%-GNANA (product name: Helicobactrol) with male and female rats as test animals was 5,000 mg/kg/day, and it thus was determined that the substance is safe for the ultimate use as an ingredient of health functional foods.

본 시험은 sialic acid가 7%를 함유하도록 제조한 유청가수분해단백분말제제(whey protein of hydrolysis)의 기능성 식품원료로 개발을 위한 동물안전성을 평가함에 연구목표를 두었다. GMP를 원료로 제조한 시험물질은 sialic acid 7%(v/v)와 원료인 GMP 가수분해 단백질이 93%로 구성되어 있었다(시험명: 7%-GNANA). 시험물질의 독성 유무는 한국식품의약안전청(KFDA, 2014)과 OECD(2008)의 의약품 등의 독성시험 기준에 따라 실시하였다. 평가방법으로서, 시험물질의 투여용량을 0, 1,250, 2,500 및 5,000 mg/kg/day로 하여 SPF Sprague-Dawley 계열 암수 랫드에 90일 동안 반복경구투여하였을 때 나타나는 독성 여부를 평가하였다. 평가항목으로서는 사망률, 일반증상관찰, 체중 변화, 사료 섭취량 측정, 안검사, 요검사, 혈액학적 및 혈액생화학적 검사, 부검 시 장기의 중량측정, 부검 시 육안적 검사 및 조직병리학적 검사 등을 평가하였다. 90일 반복경구투여 실험결과로서, 시험물질투여 및 관찰기간 동안 사망동물은 발생하지 않았다. 또한 일반증상, 체중 변화, 사료섭취량, 안과학적 검사, 요검사 그리고 혈액학적 및 혈액이화학적 이상 및 혈액응고검사에서 대조군 대비 특이한 변화는 관찰되지 않았다(p<0.05). 부검 및 병리조직학적 평가 결과, 암수 모두에서 시험물질-유래 중요한 변화 없이 시험물질-유래 경미한 변화(non-adverse effect)만인 5,000 mg/kg/day에서 확인되었다. Weight-based classification(독성 강도에 따른 분류)을 적용한 최종 독성평가 결과, 수컷의 경우 NOEL(No Observed Effect Level)은 5,000 mg/kg/day 그리고 암컷의 경우는 NOAEL(No Observed Adverse Effect Level)은 5,000 mg/kg/day로 최종 확인되었다. 따라서, 암수 모두에서 시험물질의 NOAEL은 투여최대용량인 5,000 mg/kg/day로 확인되었다. 결론적으로, GMP를 원료로 하여 제조한 7%-GNANA(유청가수분해단백분말)는 투여가능 최대용량에서도 독성이 없는 안전한 천연물이라는 것을 확인하였고, 의약품이나 기능성 식품으로서의 개발 가능성을 확인하였다.

Keywords

References

  1. Boorman, G. A. et al. 2006. Pathology of the fischer rat. Academic Press, INC., pp. 132-134.
  2. Brody, E. P. 2000. Biological activities of bovine glyco-macropeptide. British Journal of Nutrition 84:S39-S46.
  3. Gikins, Mary L. A. 2006. Clinical laboratory parameters for Crl:CD(SD) rats. Charles River Laboratories.
  4. Gorog, P. and Kovacs, I. B. 1978. Anti-inflammatory effect of sialic acid. Agents and Actions 8:543-545. https://doi.org/10.1007/BF02111443
  5. Iijima, R., Takahashi, H., Namme, R., Ikegami, S. and Yamazaki, M. 2004. Novel biological funtion of sialic acid (N-acetyl-neuraminic acid) as a hydrogen peroxide scavenger. FEBS Letters 561:163-166. https://doi.org/10.1016/S0014-5793(04)00164-4
  6. Ishikawa, M. and Koizumi, S. 2010. Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli. Carbohydrate Research 345:2605-2609. https://doi.org/10.1016/j.carres.2010.09.034
  7. Keenan, C., Elmore, S., Francke-Carroll, S., Kemp, R., Kerlin, R., Peddada, S. and Pletcher, J. 2009. Best practices for use of historical control data of proliferative rodent lesions. Toxicol. Pathol. 37:679-693. https://doi.org/10.1177/0192623309336154
  8. Lewis, R. W., Billington, R., Debryune, E., Gamer, A, Lang, B. and Carpanini, F. 2002. Recognition of adverse and nonadverse effects in toxicity studies. Toxicologic Pathology 30:66-74. https://doi.org/10.1080/01926230252824725
  9. Ministry of Food and Drug Safety (KFDA) Notice No. 2014-136 (Jul. 30, 2014) 'Guidelines for toxicity tests in drugs, etc.' KFDA Notice No. 2014-67 (Feb. 12, 2015).
  10. Moon, Y. I., Lee, W. J. and Sejong, O. H. 2005. Glycomacropeptide hydrolysed from bovine ${\kappa}$-casein ; II. Chromatographic changes of ${\kappa}$-casein macropeptide as related to trichloroacetic acid concentration. Korean J. Food Sci. Ani. Resour. 25:478-482.
  11. Oh, S. J., Kim, S. H., Jeon, W. M., Kim, B. C. and Ki, Y. K. 1997. Glycomacropeptide hydrolysed from bovin ${\kappa}$-casein (I. The fractionation of glycomacropeptide). Korean J. Food Sci. Ani. Resour. 17(1):51-57.
  12. Organization for Economic Co-operation and Development (OECD). 2008. OECD guidelines 408 for the testing of chemicals: Repeated Dose 90 day oral toxicity study in oodents Organization for Economic Co-operation and Development. Paris, France. pp.1-10.
  13. Park, Y. C. and Cho, M. H. 2011. A new way in deciding NOAEL based on the findings from GLP-toxicity test. Toxicology Research 27:133-135. https://doi.org/10.5487/TR.2011.27.3.133
  14. Springer-Verlag, R. S. 1984. Sialic acids: Chemistry, metabolism and function. Carbohydrate Research 129:c5-c7. https://doi.org/10.1016/0008-6215(84)85324-0
  15. United States of Food and Drug Administration (USFDA). 2005. Guidance for industry estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Pharmacology and Toxicology. United States of Food and Drug Administration. Rockville. MD, USA. pp. 5-6.
  16. Wang, B. 2009. Sialic acid is and essential nutrient for brain development and cognition. Annu. Rev. Nutr. 29: 177-222. https://doi.org/10.1146/annurev.nutr.28.061807.155515
  17. Wang, B., Brand-Miller, J. 2003. The role and potential of sialic acid in human nutrition. European Journal of Clinical Nutrition 57:1351-1369. https://doi.org/10.1038/sj.ejcn.1601704
  18. Wang, B., Brand-Miller, J., McVeagh, P. and Petocz, P. 2001. Concentration and distribution of sialic acid in human milk and infant $formulas^{1-3}$. Am. J. Clin. Nutr. 74:510-515. https://doi.org/10.1093/ajcn/74.4.510
  19. Wang, B., Yu, B., Karim, M., Hu, H., S., McGreevy, Y., Petocz, H. P., Held, S. and Miller, J. B. 2007. Dietary sialic acid supplementation improves learning and memory in $piglets^{1-3}$. Am. J. Clin. Nutr. 85:561-569. https://doi.org/10.1093/ajcn/85.2.561
  20. Yoon, Y. C., Cho, J. K., Song, C. H., Lee, S. and Chung, C. I. 2000. Purification of the glycomacropeptide from cheese whey. Korean J. Food Sci. Ani. Resour. 20:159-165.
  21. Zimmermann, V., Hennemann, H. G., Daussmann, D. and Kragl, U. 2007. Modelling the reaction course of Nacetylneuraminic acid synthesis from N-acetyl-D-glucosamine new strategies for the optimisation of neuraminic acid synthesis. Appl. Microbiol. Biotechnol. 76:597-605. https://doi.org/10.1007/s00253-007-1033-6