DOI QR코드

DOI QR Code

Influence of Post-depsotion Vacuum Annealing on the Properties of SnO2 Thin Films

증착 후 진공열처리에 따른 SnO2 박막의 특성 변화

  • Song, Young-Hwan (School of Materials Science and Engineering, University of Ulsan) ;
  • Moon, Hyun-Joo (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
  • 송영환 (울산대학교 첨단소재공학부) ;
  • 문현주 (울산대학교 첨단소재공학부) ;
  • 김대일 (울산대학교 첨단소재공학부)
  • Received : 2016.04.28
  • Accepted : 2016.05.09
  • Published : 2016.07.30

Abstract

$SnO_2$ thin films were prepared by radio frequency magnetron sputtering on glass substrates and then vacuum annealed for 30 minutes at 100, 200, and $300^{\circ}C$, respectively. The thickness of films kept at 100 nm by controlling the deposition rate. While the optical transmittance and electrical resistivity of as deposited $SnO_2$ films were 82.6% in the visible wavelength region and $1.9{\times}10^{-3}{\Omega}cm$, respectively, the films annealed at $200^{\circ}C$ show the increased optical transmittance of 84.5% and the electrical resistivity also decreased as low as $8.5{\times}10^{-4}{\Omega}cm$. From the observed results, it is concluded that post-deposition vacuum annealing at $200^{\circ}C$ is an attractive condition to optimize the opto-elecrtical properties of $SnO_2$ thin films for the opto-electrical applications.

Keywords

References

  1. R. Joshi, V. Singh and J. McClure : Thin Solid Films, 257 (1995) 32. https://doi.org/10.1016/0040-6090(94)06331-1
  2. H. M. Lee, Y. J. Lee, Y. S. Kim and D. Kim : Vacuum, 86 (2012) 1494. https://doi.org/10.1016/j.vacuum.2012.02.041
  3. S. Yu, W. Zhang, L. Li, D. Xu, H. Dong and Y. Jin : Thin Solid Films, 552 (2014) 150 https://doi.org/10.1016/j.tsf.2013.11.109
  4. S. Y. Kim, H. Moon and D. Kim : J. Korean. Soc. Heat Treat., 28 (2015) 134. https://doi.org/10.12656/jksht.2015.28.3.134
  5. K. Zakrzewska and M. Radecka : Thin Solid Films, 515 (2007) 8332. https://doi.org/10.1016/j.tsf.2007.03.019
  6. G. Turgut : Thin Solid Films, 594 (2015) 56. https://doi.org/10.1016/j.tsf.2015.10.011
  7. X. Jia, Y. Liu, X. Wu and Z. Zhang : Appl. Surf. Sci., 311 (2014) 609. https://doi.org/10.1016/j.apsusc.2014.05.118
  8. L. Liu, S. Ma, H. Wu, B. Zhu, H. Yang, J. Tang and X. Zhao : Mater. Lett., 149 (2015) 43. https://doi.org/10.1016/j.matlet.2015.02.093
  9. G. Haacke : J. Appl. Phys., 47 (1976) 4086. https://doi.org/10.1063/1.323240
  10. B. D. Cullity : Elements of X-ray Diffractions, Addition-Wesley, Reading, MA, 1978.
  11. G. Goncalves : Thin Solid Films, 515 (2007) 8562-8566. https://doi.org/10.1016/j.tsf.2007.03.126
  12. 허성보 : "전자빔 조사 에너지에 따른 GZO/$TiO_2$ 박막의 물성변화", 울산대 석사학위논문 (2013) 40-42.
  13. H. J. Moon and D. Kim : J. Korean. Soc. Heat Treat., 29 (2016) 62. https://doi.org/10.12656/jksht.2016.29.2.62
  14. A. Sarkar, S. Ghosh, S. Chaudhuri and A. K. Pal : Thin Solid Films, 204 (1991) 255. https://doi.org/10.1016/0040-6090(91)90067-8

Cited by

  1. AZO/Ni/SnO2 적층박막의 전기적, 광학적 특성 연구 vol.30, pp.1, 2016, https://doi.org/10.12656/jksht.2017.30.1.13
  2. 급속열처리에 따른 ZTO/Ag/ZTO 박막의 전기적, 광학적 특성 개선 효과 vol.30, pp.4, 2016, https://doi.org/10.12656/jksht.2017.30.4.151