DOI QR코드

DOI QR Code

An Adaptive Back-off Algorithm in Beacon-Enabled LR-WPAN

비콘 기반 저속 WPAN에서의 적응적 백오프 알고리즘

  • Park, Sung-Woo (Dept. of Information and Communication Eng., Hannam University)
  • 박성우 (한남대학교 정보통신공학과)
  • Received : 2016.07.26
  • Accepted : 2016.08.24
  • Published : 2016.08.31

Abstract

The Low-Rate WPAN is a short range wireless networking technology characterized by low-rate, low-power, low complexity and low-cost. The LR-WPAN controls wireless channel access among network devices based on the contention-based CSMA/CA algorithm. Therefore, frame collisions may take place at any time, leading to the severe degradation of network performance. This paper proposes a new algorithm that changes back-off periods adaptively in the CSMA/CA process depending on network conditions, resulting in the reduction of frame collisions. Throughout extensive simulations, it turns out that varying the back-off periods dynamically shows better performance than maintaining the fixed back-off periods.

저속 WPAN은 저속, 저전력, 저비용의 단거리 무선 네트워킹 기술이다. 저속 WPAN에서는 경쟁 기반의 CSMA/CA 알고리즘을 사용하여 디바이스들의 무선 채널 접속을 제어하기 때문에 프레임 전송시 언제라도 충돌이 발생할 수 있으며 이로 인해 네트워크 성능이 심각하게 저하될 수 있다. 본 논문에서는 저속 WPAN의 CSMA/CA 과정에서 프레임 충돌율을 줄이기 위해 네트워크 상황에 따라 백오프 구간을 동적으로 변화시키는 알고리즘을 제안한다. 시뮬레이션 수행 결과, CSMA/CA 과정에서 제안하는 동적 백오프 알고리즘은 백오프 구간을 정적으로 유지했을 경우에 비해 프레임 전달율과 지연 시간 측면에서 안정적이면서도 우수한 성능을 보이는 것을 확인하였다.

Keywords

References

  1. F. Chen, N. Wang, R. German, and F. Dressler, "Simulation study of IEEE 802.15.4 LR-WPAN for industrial applications," Wireless Communications and Mobile Computing, vol. 10, issue 5, 2010, pp. 609-621. https://doi.org/10.1002/wcm.736
  2. G. Kim, "Implementation of real-time sensor monitoring system on Zigbee module," J. of the Korea Institute of Electronic Communication Science, vol. 6, no. 2, 2011, pp. 312-318.
  3. J. Lee and J. Hong, "Performance improvement of IEEE 802.15.4 MAC for medical WBAN environments," J. of the Korea Institute of Electronic Communication Science, vol. 10, no. 1, 2015, pp. 103-110. https://doi.org/10.13067/JKIECS.2015.10.1.103
  4. IEEE Std. 802.15.4 Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE, New York, USA, Sept. 2011.
  5. C. Singh, A. Kumar, and P. Ameer, "Performance evaluation of an IEEE 802.15.4 sensor network with a star topology," J. of Wireless Networks, vol. 14, issue 4, Aug. 2008. pp. 543-568. https://doi.org/10.1007/s11276-007-0043-8
  6. D. Rohm, M. Goyal, H. Hosseini, A. Divjak, and Y. Bashir, "A simulation based analysis of the impact of IEEE 802.15.4 MAC parameters on the performance under different traffic loads," J. of Mobile Information Systems-Advances in Wireless Networks, vol. 5, issue 1, 2009, pp. 81-99.
  7. J. Lee and I. Kim, "A study on the CSMA/CA performance improvement based on IEEE 802.15.6," J. of the Korea Institute of Electronic Communication Science, vol. 10, no. 11, 2015, pp. 1225-1230. https://doi.org/10.13067/JKIECS.2015.10.11.1225
  8. Z. Dahham, A. Sali, and B. ALi, "An efficient backoff algorithm for IEEE 802.15.4 wireless sensor networks," Wireless Personal Communications, vol. 75, issue 4, 2014, pp. 2073-2088. https://doi.org/10.1007/s11277-013-1454-8
  9. A. Vutukuri, S. Bhattacharya, T. Raj, and V. Geetha, "Enhanced back-off technique for IEEE 802.15.4 WSN standard," In Proc. 7th Int. Conf. Networks & Communications, Sydney, Australia, Dec. 2015, pp. 21-29.
  10. IEEE Std. 802.15.5 Part 15.5: Mesh Topology Capability in Wireless Personal Area Networks (WPANs), IEEE, New York, USA, May 2009.