DOI QR코드

DOI QR Code

Fabrication and Characterization of Ag Particles by Polyol Process and Wet Chemical Process

폴리올 공정과 액상 환원 공정에 따른 은 입자 제조 및 특성 평가

  • Yoo, Juyeon (Department of Energy Engineering, Dankook University) ;
  • Jang, Hyosung (Department of Energy Engineering, Dankook University) ;
  • Lee, Kun-Jae (Department of Energy Engineering, Dankook University)
  • 유주연 (단국대학교 에너지공학과) ;
  • 장효성 (단국대학교 에너지공학과) ;
  • 이근재 (단국대학교 에너지공학과)
  • Received : 2016.07.26
  • Accepted : 2016.08.12
  • Published : 2016.08.28

Abstract

Ag nanoparticles are extensively studied and utilized due to their excellent catalysis, antibiosis and optical properties. They can be easily synthesized by chemical reduction methods and it is possible to prepare particles of uniform size and high purity. These methods are divided into vapor methods and liquid phase reduction methods. In the present study, Ag particles are prepared and analyzed through two chemical reduction methods using solvents containing a silver nitrate precursor. When Ag ions are reduced using a reductant in the aqueous solution, it is possible to control the Ag particle size by controlling the formic acid ratio. In addition, in the Polyol process, Ag nanoparticles prepared at various temperatures and reaction time conditions have multiple twinned and anisotropic structures, and the particle size variation can be confirmed using field emissions scanning electron microscopy and by analyzing the UV-vis spectrum.

Keywords

References

  1. S. Suwanboon, R. Tanattha and R. Tanakorn: J. Sci. Technol., 30 (2008) 65.
  2. Y. Sun, Y. Yin, B. T. Mayers, T. Herricks and Y. Xia: Chem. Mater., 14 (2002) 4736. https://doi.org/10.1021/cm020587b
  3. L. H. Bac, W. H. Gu, J. C. Kim, B. K. Kim and J. S. Kim: J. Korean Powder Metall. Inst., 19 (2012) 55. https://doi.org/10.4150/KPMI.2012.19.1.055
  4. W. Chen, W. Cai, L. Zhang, G. Wang and L. Zhang: J. Colloid Interface Sci., 238 (2001) 291. https://doi.org/10.1006/jcis.2001.7525
  5. A. Frattini, N. Pellegri, D. Nicastro and O. de Sanctis: Mater. Chem. Phys., 94 (2005) 148. https://doi.org/10.1016/j.matchemphys.2005.04.023
  6. A. Henglein: Langmuir, 17 (2001) 2329. https://doi.org/10.1021/la001081f
  7. A. A. Ashkarran, S. Estakhri, M. R. H. Nezhad and S. Eshghi: Phys. Procedia, 40 (2013) 76. https://doi.org/10.1016/j.phpro.2012.12.011
  8. M. Yamamoto and M. Nakamoto: J. Mater. Chem., 13 (2003) 2064. https://doi.org/10.1039/b307092a
  9. C. Feldmann: Adv. Mater., 13 (2001) 1301. https://doi.org/10.1002/1521-4095(200109)13:17<1301::AID-ADMA1301>3.0.CO;2-6
  10. P. Toneguzzo, G. Viau, O. Acher, F. Guillet, E. Bruneton, F. Fievet-Vincent, F. Fievet: J. Mater. Sci., 35 (2000) 3767. https://doi.org/10.1023/A:1004864927169
  11. J. H. Lee, S. H. Kim, J. W. Kim, M. H. Lee and Y. D. Kim: J. Korean Powder Metall. Inst., 19 (2012) 60. https://doi.org/10.4150/KPMI.2012.19.1.060
  12. Y. Zhang, P. Yang and L. Zhang: Mater. Chem. Phys., 138 (2013) 767. https://doi.org/10.1016/j.matchemphys.2012.12.055
  13. Y. Yang, S. Matsubara, L. Xiong, T. Hayakawa and M. Nogami: J. Phys. Chem., 111 (2007) 9095.
  14. H. Park, M. H. Kim and W. H. Park: Text. Sci. Eng., 52 (2015) 185. https://doi.org/10.12772/TSE.2015.52.185
  15. Y. H. Kim and J. S. Lee: Polym. Sci. Technol., 27 (2016) 29.
  16. V. K. Sharma, R. A. Yngard and Y. Lin: Adv. Colloid Interface Sci., 145 (2009) 83. https://doi.org/10.1016/j.cis.2008.09.002
  17. Y. Sun, B. Mayers, T. Herricks and Y. Xia: Nano Lett., 3 (2003) 955. https://doi.org/10.1021/nl034312m

Cited by

  1. Recovery and Synthesis of Silver Nanoparticles from Leaching Solution of LTCC Electrode By-Products vol.24, pp.4, 2017, https://doi.org/10.4150/KPMI.2017.24.4.315