DOI QR코드

DOI QR Code

Anti-proliferation Effect of Coscinoderma sp. Extract on Human Colon Cancer Cells

Coscinoderma sp.의 대장암세포 증식 억제 효과

  • Choi, Ki Heon (College of Pharmacy, Duksung Women's University) ;
  • Jung, Joohee (College of Pharmacy, Duksung Women's University)
  • 최기헌 (덕성여자대학교 약학대학) ;
  • 정주희 (덕성여자대학교 약학대학)
  • Received : 2016.07.04
  • Accepted : 2016.07.21
  • Published : 2016.08.30

Abstract

Natural products are attractive as the source of new drug development. Especially, numerous unknown marine bioresources are an object of attention because the ocean occupies three fourth of the earth. Survival of marine bioresources in extreme environment may induce the production of biological active compounds. As previous study, we examined over 40 specimens of marine sponges collected from Micronesia and screened their anti-proliferative activities in various cancer cell lines. Among them, we investigated Coscinoderma sp.'s activity and mechanism in human colon carcinoma HCT116 and RKO cells. Furthermore, we also used the p53-knockout of HCT116 cells and the p53 loss of RKO cells for elucidating the role of p53. Coscinoderma sp. inhibited cellular viability independently of the p53 status. Therefore, we compared the expression level of cell death-related proteins by Coscinoderma sp. in HCT16 and in HCT116 p53KO cells. Coscinoderma sp. increased p53 level and NOXA levels and induced apoptosis under the condition of p53 existence. On the other hand, Coscinoderma sp. increased p21 and mTOR levels in HCT116 p53KO cells. These results suggest that Coscinoderma sp. induced anti-proliferation effect through different pathway depending on p53 status.

해양생물을 포함한 천연물질은 신약개발의 원천 소재로서 매력적이며, 특히 무수한 미지의 해양생물들의 연구가 관심을 받고 있다. 기존의 연구에서 미크로네시아에서 채취한 해면동물 40여종에 대하여 항증식 효과를 다양한 암세포주에서 검색한 바 있다. 본 연구에서는 그 중 Coscinoderma sp.의 작용 및 그 기전을 살펴보았다. 특히, 암 억제유전자 p53의 발현을 억제시킨 세포주(HCT116 p53KO과 RKO-E6)에서의 차이점을 비교하였다. 세포생존률 시험에서 Coscinoderma sp. 추출물은 p53의 유무와 상관없이 암세포의 증식을 억제하였음을 확인하였다. 이 암세포 증식 억제 효과가 p53 존재에 따라 다르게 나타나는지 알아보기 위하여 세포사멸 관련 단백질 발현양을 Coscinoderma sp. 처리한 각 세포주에서 비교하였다. 그 결과, Coscinoderma sp.를 HCT16 세포주에 처리하였을 때, p53과 Noxa의 발현이 증가하는 것을 관찰하였고, caspase-9이 분절되면서 감소하는 것으로부터 apoptosis를 일으킨다고 여겨진다. 반면, p53이 결핍된 HCT116세포주에서는 Coscinoderma sp.에 의하여 p21과 mTOR의 발현이 증가되는 것을 확인하였고, 이는 senescence를 야기할 수 있다고 여겨진다. 본 연구로부터 Coscinoderma sp.는 p53의 존재여부에 따라 상이한 작용기전을 매개하여 대장암 세포주의 증식을 억제한다는 것을 알 수 있었다. 이는 새로운 항암제의 개발 가능성을 제시하는 것으로, Coscinoderma sp.의 활성 성분에 대한 지속적인 연구가 이루어 져야 할 것으로 보인다.

Keywords

References

  1. Park Y., Lee J., Oh J.H., Shin A., Kim, J.: Dietary patterns and colorectal cancer risk in a Korean population: A case-control study. Medicine, 95, e3759 (2016). https://doi.org/10.1097/MD.0000000000003759
  2. Jung K.W., Won Y.J., Oh C.M., Kong H.J., Cho H., Lee J.K., Lee D.H., Lee K.H.: Prediction of Cancer Incidence and Mortality in Korea, 2016. Cancer res. treat., 48, 451-457 (2016). https://doi.org/10.4143/crt.2016.092
  3. Binefa G., Rodriguez-Moranta F., Teule A. and Medina-Hayas, M.: Colorectal cancer: from prevention to personalized medicine. World j. gastroenterol., 20, 6786-6808 (2014). https://doi.org/10.3748/wjg.v20.i22.6786
  4. Panczyk M.,: Pharmacogenetics research on chemotherapy resistance in colorectal cancer over the last 20 years. World j. gastroenterol., 20, 9775-9827 (2014). https://doi.org/10.3748/wjg.v20.i29.9775
  5. Shin S.A., Lee H.N., Choo G.S., Kim H.J., Park B.K., Kim. B.S., Jung J.Y.: Induction of apoptosis in human cancer cells with extracts of Taraxacum coreanum, Youngia sonchifolia and Ixeris dentate. J. Food Hyg. Saf., 31, 51-58 (2016). https://doi.org/10.13103/JFHS.2016.31.1.51
  6. Park S., Moon H.S.: Anti-proliferative effects of Celastrol, a quinine methide triterpene extracted from the Perennial vine Tripterygium wilfordii, on obesity-related cancers. J. Food Hyg. Saf., 31, 59-66 (2016). https://doi.org/10.13103/JFHS.2016.31.1.59
  7. Bae W., Lim H.K., Kim K.M., Cho H., Lee S.Y., Jeong C.S., Lee H.S., Jung J.: Apoptosis-Inducing Activity of Marine Sponge Haliclona sp. Extracts Collected from Kosrae in Nonsmall Cell Lung Cancer A549 Cells. Evid. Based complement. alternat. med., 2015, 717959 (2015).
  8. Mehbub M.F., Lei J., Franco C., Zhang W.: Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Marine drugs, 12, 4539-4577 (2014). https://doi.org/10.3390/md12084539
  9. Thomas T.R., Kavlekar D.P., LokaBharathi P.A.: Marine drugs from sponge-microbe association-a review. Marine drugs, 8, 1417-1468 (2010). https://doi.org/10.3390/md8041417
  10. Mayer A.M., Rodriguez A.D., Taglialatela-Scafati O., Fusetani N.: Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Marine drugs, 11, 2510-2573 (2013). https://doi.org/10.3390/md11072510
  11. Lim H.K., Bae W., Lee H.S., Jung, J.: Anticancer activity of marine sponge Hyrtios sp. extract in human colorectal carcinoma RKO cells with different p53 status. BioMed Res. Inter., 2014, 413575 (2014).
  12. Lee S.H., Won T.H., Kim H., Ahn C.H., Shin J., Oh K.B.: Suvanine sesterterpenes from a tropical sponge Coscinoderma sp. inhibit isocitrate lyase in the glyoxylate cycle. Marine drugs, 12, 5148-5159 (2014). https://doi.org/10.3390/md12105148
  13. Kim C.K., Song I.H., Park H.Y., Lee Y.J., Lee H.S., Sim C.J., Oh D.C., Oh K.B., Shin J.: Suvanine sesterterpenes and deacyl irciniasulfonic acids from a tropical Coscinoderma sp. sponge. J. nat. prod., 77, 1396-1403 (2014). https://doi.org/10.1021/np500156n
  14. Lee J.W., Lee H.S., Shin J., Kang J.S., Yun J., Shin H.J., Lee J.S., Lee Y.J.: Suvanine analogs from a Coscinoderma sp. marine sponge and their cytotoxicities against human cancer cell lines. Arch. pharm. res., 38, 1005-1010 (2015). https://doi.org/10.1007/s12272-014-0479-1
  15. Seviour E.G. and Lin S.Y.: The DNA damage response: Balancing the scale between cancer and ageing. Aging, 2, 900-907 (2010). https://doi.org/10.18632/aging.100248
  16. Rufini A., Tucci P., Celardo I., Melino G.: Senescence and aging: the critical roles of p53. Oncogene, 32, 5129-5143 (2013). https://doi.org/10.1038/onc.2012.640
  17. Xu S., Cai Y., Wei Y.: mTOR Signaling from Cellular Senescence to Organismal Aging. Aging and disease, 5, 263-273 (2014).
  18. Strozyk E. and Kulms D.: The role of AKT/mTOR pathway in stress response to UV-irradiation: implication in skin carcinogenesis by regulation of apoptosis, autophagy and senescence. Int. j. mol. sci., 14, 15260-15285 (2013). https://doi.org/10.3390/ijms140815260
  19. Fu X., Ferreira M.L., Schmitz F.J., Kelly M.: Halisulfate 7, a new sesterterpene sulfate from a sponge, Coscinoderma sp. J. nat. prod., 62, 1190-1191 (1999). https://doi.org/10.1021/np990074s
  20. Bae J., Jeon J.E., Lee Y.J., Lee H.S., Sim C.J., Oh K.B., Shin J.: Sesterterpenes from the tropical sponge Coscinoderma sp. J. nat. prod., 74, 1805-1811 (2011). https://doi.org/10.1021/np200492k