DOI QR코드

DOI QR Code

Anti-Inflammatory Effect of Ethanol Extract from Grateloupia crispata on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears

LPS로 유도된 RAW 264.7 세포와 마우스 귀 조직에 대한 주름까막살 에탄올 추출물의 항염증 효과

  • Bae, Nan-Young (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Kim, Min-Ji (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Kim, Koth-Bong Woo-Ri (Institute of Fisheries Sciences, Pukyong National University) ;
  • Park, Sun-Hee (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Jang, Mi-Ran (Health Functional Food Policy Division, Ministry of Food and Drug Safety) ;
  • Ahn, Dong-Hyun (Department of Food Science & Technology/Institute of Food Science, Pukyong National University)
  • 배난영 (부경대학교 식품공학과/식품연구소) ;
  • 김민지 (부경대학교 식품공학과/식품연구소) ;
  • 김꽃봉우리 (부경대학교 수산과학연구소) ;
  • 박선희 (부경대학교 식품공학과/식품연구소) ;
  • 장미란 (식품의약품안전처 건강기능식품정책과) ;
  • 안동현 (부경대학교 식품공학과/식품연구소)
  • Received : 2016.06.16
  • Accepted : 2016.07.29
  • Published : 2016.08.31

Abstract

The anti-inflammatory effects of ethanol extract from Grateloupia crispata (GCEE) were investigated in lipopolysaccharide (LPS)-stimulated murine macrophages. Anti-inflammatory effects were detected by enzyme-linked immunosorbent assay, Western blotting, and immunohistochemistry. There was no cytotoxic effect on proliferation of macrophages treated with GCEE compared to the control. GCEE significantly inhibited production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis $factor-{\alpha}$, and $IL-1{\beta}$] as well as nitric oxide in LPS-stimulated RAW 264.7 cells. In addition, GCEE suppressed expression of inducible nitric oxide synthase, cyclooxygenase-2, and nuclear $factor-{\kappa}B$ in a dose-dependent manner. GCEE significantly reduced activation of mitogen-activated protein kinases. In the in vivo test, evaluation of anti-inflammatory activity of GCEE was performed using croton oil-induced ear edema in ICR mice. Oral administration of 10 mg/kg to 250 mg/kg of GCEE significantly reduced ear edema in a dose-dependent manner compared to croton oil-induced mice. Moreover, GCEE reduced ear thickness and the number of mast cells compared to croton oil-induced mice in the histological analysis. These data suggest that GCEE could be used as a potential source for anti-inflammatory agents.

본 연구는 해조류 중에서도 홍조류인 주름까막살 에탄올 추출물(GCEE)의 항염증 효과를 확인하기 위한 실험으로 proinflammatory cytokines의 분비량 및 iNOS, COX-2, $NF-{\kappa}B$와 MAPKs의 발현량을 관찰하고 마우스모델에서 항염증 효과를 확인하였다. GCEE가 세포 생존율에 있어 독성을 나타내지 않음을 MTT assay를 통해 확인한 후 같은 농도로 추후실험을 진행하였다. NO 분비량이 GCEE에 의해 농도 의존적으로 감소하였으며 전염증성 매개물질인 사이토카인(IL-6, $TNF-{\alpha}$$IL-1{\beta}$)의 분비량 또한 유의적으로 감소하였다. 이러한 결과가 전염증성 매개인자의 전사인자인 $NF-{\kappa}B$와 MAPKs 경로에 의한 것인지 확인하기 위하여 발현량을 관찰한 결과, GCEE가 LPS 처리로 현저히 증가한 염증 관련 효소인 iNOS와 COX-2의 단백질 발현을 농도 의존적으로 유의성 있게 억제하였고 전사인자인 $NF-{\kappa}B$ 및 MAPKs의 발현을 억제하였다. 또한, GCEE는 croton oil로 부종을 유발한 마우스모델에서 귀 부종 억제 효과를 나타내었고 250 mg/kg 농도에서 조직의 경피 및 진피 두께의 발달을 prednisolone 50 mg/kg 처리구와 유사한 정도까지 현저히 억제하고 염증성 세포인 mast cell의 침윤 억제 효과도 확인하였다. 이를 통해 주름까막살 에탄올 추출물은 염증반응의 전사인자인 $NF-{\kappa}B$와 MAPKs의 발현을 조절함으로써 iNOS와 COX-2의 발현을 억제하고 그에 따라 전염증성 매 개인자인 NO, IL-6, $TNF-{\alpha}$$IL-1{\beta}$의 분비를 억제하여 항염증 활성을 가지는 것을 확인하였으며, 이 결과를 종합해 볼 때 주름까막살 에탄올 추출물이 염증 치료제의 소재로 이용될 가치가 충분할 것으로 생각한다.

Keywords

References

  1. Trowbridge HO, Emling RC, Fornatora M. 1997. Inflammation. A review of the process. Implant Dent 6: 238.
  2. Higuchi M, Higashi N, Taki H, Osawa T. 1990. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J Immunol 144: 1425-1431.
  3. Yi HS, Heo SK, Yun HJ, Choi JW, Jung JH, Park SD. 2008. Anti-oxidative and anti-inflammatory effects of Draconis Resina in mouse macrophage cells. Kor J Herbol 23: 179-192.
  4. Hinz B, Brune K. 2002. Cyclooxygenase-2 - 10 years later. J Pharmacol Exp Ther 300: 367-375. https://doi.org/10.1124/jpet.300.2.367
  5. Choi C, Cho H, Park J, Cho C, Song Y. 2003. Suppressive effects of genistein on oxidative stress and $NF{\kappa}B$ activation in RAW 264.7 macrophages. Biosci Biotechnol Biochem 67: 1916-1922. https://doi.org/10.1271/bbb.67.1916
  6. Athman R, Philpott D. 2004. Innate immunity via Toll-like receptors and Nod proteins. Curr Opin Microbiol 7: 25-32. https://doi.org/10.1016/j.mib.2003.12.013
  7. Beinke S, Ley SC. 2004. Functions of $NF-{\kappa}B1$ and $NF-{\kappa}B2$ in immune cell biology. Biochem J 382: 393-409. https://doi.org/10.1042/BJ20040544
  8. de Heredia FP, Gomez-Martinez S, Marcos A. 2012. Obesity, inflammation and the immune system. Proc Nutr Soc 71: 332-338. https://doi.org/10.1017/S0029665112000092
  9. Boumpas DT, Chrousos GP, Wilder RL, Cupps TR, Balow JE. 1993. Glucocorticoid therapy for immune-mediated diseases: basic and clinical correlates. Ann Intern Med 119: 1198-1208. https://doi.org/10.7326/0003-4819-119-12-199312150-00007
  10. Kim MJ, Bae NY, Kim KBWR, Park JH, Park SH, Jang MR, Ahn DH. 2016. Anti-inflammatory effect of Chondrus nipponicus Yendo ethanol extract on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells. J Korean Soc Food Sci Nutr 45: 194-201. https://doi.org/10.3746/jkfn.2016.45.2.194
  11. Kim MJ, Bae NY, Kim KBWR, Park JH, Park SH, Choi JS, Ahn DH. 2016. Anti-inflammatory effect of Grateloupia imbricata Holmes ethanol extract on LPS-induced RAW 264.7 cells. J Korean Soc Food Sci Nutr 45: 181-187. https://doi.org/10.3746/jkfn.2016.45.2.181
  12. Jeong DH, Ahn NK, Choi YU, Park JH, Bae NY, Park SH, Kim KBWR, Ahn DH. 2015. Inhibitory effect of Sargassum fulvellum water extract on 2,4-dinitochlorobenzene-induced atopic dermatitis-like skin lesions in mice. Microbiol Biotechnol Lett 43: 150-157. https://doi.org/10.4014/mbl.1504.04006
  13. Park JH, Bae NY, Park SH, Kim MJ, Kim KBWR, Choi JS, Ahn DH. 2015. Antioxidant effect of Sargassum coreanum root and stem extracts. Korean Soc Biotechnol Bioeng J 30: 155-160.
  14. Lee YP. 2008. Marine algae of Jeju. Academy Publishing Co., Seoul, Korea. p 381.
  15. Bae NY, Kim MJ, Kim KBWR, Ahn NK, Choi YU, Park JH, Park SH, Ahn DH. 2015. Anti-inflammatory effect of ethanol extract from Grateloupia elliptica Holmes on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells and mice ears. J Korean Soc Food Sci Nutr 44: 1128-1136. https://doi.org/10.3746/jkfn.2015.44.8.1128
  16. Bae SJ. 2004. Studies on the antioxidative and antimicrobial effects of Chondria crassicaulis. J Life Sci 14: 411-416. https://doi.org/10.5352/JLS.2004.14.3.411
  17. Shin JH, Choi DJ, Lim HC, Seo JK, Lee SJ, Choi SY, Sung NJ. 2006. Nutrients and antioxidant activity of red seaweeds. J Life Sci 16: 400-408. https://doi.org/10.5352/JLS.2006.16.3.400
  18. Park YM, Won JH, Yun KJ, Ryu JH, Han YN, Choi SK, Lee KT. 2006. Preventive effect of Ginkgo biloba extract (GBB) on the lipopolysaccharide-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 via suppression of nuclear factor-${\kappa}B$ in RAW 264.7 cells. Biol Pharm Bull 29: 985-990. https://doi.org/10.1248/bpb.29.985
  19. Yee ST, Jeong YR, Ha MH, Kim SH, Byun MW, Jo SK. 2000. Induction of nitric oxide and $TNF-{\alpha}$ by herbal plant extracts in mouse macrophages. J Korean Soc Food Sci Nutr 29: 342-348.
  20. Sheeba MS, Asha VV. 2009. Cardiospermum halicacabum ethanol extract inhibits LPS induced COX-2, $TNF-{\alpha}$ and iNOS expression, which is mediated by $NF-{\kappa}B$ regulation, in RAW264.7 cells. J Ethnopharmacol 124: 39-44. https://doi.org/10.1016/j.jep.2009.04.020
  21. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  22. Towbin H, Staehelin T, Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76: 4350-4354. https://doi.org/10.1073/pnas.76.9.4350
  23. Kim DW, Chi YS, Son KH, Chang HW, Kim JS, Kang SS, Kim HP. 2002. Effects of sophoraflavanone G, a prenylated flavonoid from Sophora flavescens, on cyclooxygenase-2 and in vivo inflammatory response. Arch Pharm Res 25: 329-335. https://doi.org/10.1007/BF02976635
  24. Saraiva RA, Araruna MK, Oliveira RC, Menezes KD, Leite GO, Kerntopf MR, Costa JG, Rocha JB, Tome AR, Campos AR, Menezes IR. 2011. Topical anti-inflammatory effect of Caryocar coriaceum Wittm. (Caryocaraceae) fruit pulp fixed oil on mice ear edema induced by different irritant agents. J Ethnopharmacol 136: 504-510. https://doi.org/10.1016/j.jep.2010.07.002
  25. Lee HJ, Lee CW, Choi MS, Son DJ, Hong JT. 2006. Effects of esthetic essential oils on LPS-induced nitric oxide generation in murine macrophage RAW 264.7 cells. J Soc Cosmet Sci Korea 32: 111-116.
  26. Knowles RG, Moncada S. 1992. Nitric oxide as a signal in blood vessels. Trends Biochem Sci 17: 399-402. https://doi.org/10.1016/0968-0004(92)90008-W
  27. Nathan C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J 6: 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  28. Seo SW. 2015. The anti-inflammatory effect of Portulaca oleracea 70% EtOH extracts on lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Kor J Herbol 30: 33-38.
  29. Cassim B, Mody G, Bhoola K. 2002. Kallikrein cascade and cytokines in inflamed joints. Pharmacol Ther 94: 1-34. https://doi.org/10.1016/S0163-7258(02)00166-3
  30. Chu WM. 2013. Tumor necrosis factor. Cancer Lett 328: 222-225. https://doi.org/10.1016/j.canlet.2012.10.014
  31. Dinarello CA. 2000. Proinflammatory cytokines. Chest 118: 503-508. https://doi.org/10.1378/chest.118.2.503
  32. Huang H, Patel DD, Manton KG. 2005. The immune system in aging: roles of cytokines, T cells and NK cells. Front Biosci 10: 192-215. https://doi.org/10.2741/1521
  33. Forstermann U, Sessa WC. 2012. Nitric oxide synthases: regulation and function. Eur Heart J 33: 829-837. https://doi.org/10.1093/eurheartj/ehr304
  34. Vane JR, Bakhle YS, Botting RM. 1998. Cyclooxygenase and 2. Anu Rev Pharmacol Toxicol 38: 97-120. https://doi.org/10.1146/annurev.pharmtox.38.1.97
  35. Sato T, Nakajima H, Fujio K, Mori Y. 1997. Enhancement of prostaglandin $E_2$ production by epidermal growth factor requires the coordinate activation of cytosolic phospholipase $A_2$ and cyclooxygenase 2 in human squamous carcinoma A431 cells. Prostaglandins 53: 355-369. https://doi.org/10.1016/S0090-6980(97)00036-1
  36. Huang M, Stolina M, Sharma S, Mao JT, Zhu L, Miller PW, Wollman J, Herschman H, Dubinett SM. 1998. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophage: up-regulation of interleukin 10 and down-regulation of interleukin 12 production. Cancer Res 58: 1208-1216.
  37. Rüegg C, Zaric J, Stupp R. 2003. Non steroidal anti-inflammatory drugs and COX-2 inhibitors as anti-cancer therapeutics: hypes, hopes and reality. Ann Med 35: 476-487. https://doi.org/10.1080/07853890310017053
  38. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22: 153-183.
  39. Dong C, Davis RJ, Flavell RA. 2002. MAP kinases in the immune response. Annu Rev Immunol 20: 55-72. https://doi.org/10.1146/annurev.immunol.20.091301.131133
  40. Seo UK, Lee JI, Park JH, Park YK. 2008. The ethylacetate extract of North Kangwhal (Ostericum koreanum) attenuates the inflammatory responses in PMA/A23187-stimulated mast cells. Kor J Herbol 23: 81-89.
  41. Towbin H, Pignat W, Wiesenberg I. 1995. Time-dependent cytokine production in the croton oil-induced mouse ear oedema and inhibition by prednisolone. Inflamm Res 44: S160-S161. https://doi.org/10.1007/BF01778311

Cited by

  1. Anti-Inflammatory Effect of Chondria crassicaulis Ethanol Extract on MAPKs and NF-κB Signaling Pathway in LPS-Induced RAW 264.7 Macrophages vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.352