DOI QR코드

DOI QR Code

Small-World 망과 Scale-Free 망을 위한 일반적인 망 생성 방법

Generalized Network Generation Method for Small-World Network and Scale-Free Network

  • Lee, Kang-won (Seoul National University of Science & Technology) ;
  • Lee, Jae-hoon (Seoul National University of Science & Technology) ;
  • Choe, Hye-zin (Seoul National University of Science & Technology)
  • 투고 : 2016.04.19
  • 심사 : 2016.07.26
  • 발행 : 2016.07.31

초록

최근 들어 다양한 SNS(Social Network Service)에 대한 이해와 분석을 위해 가장 중요한 두 종류의 망인 small-world와 scale-free망에 대한 많은 연구가 수행되고 있다. 본 연구에서는 두 개의 입력 파라미터를 적절히 조정함으로서 small-world 망, scale-free 망 혹은 두 개의 성질을 동시에 모두 갖는 망을 생성 할 수 있는 보다 일반화된 망 생성 방법을 제안하였다. 두개의 입력 파라미터중 하나는 small-world 성질을 나태내주는 파라미터고 다른 하나는 scale-free와 small-world 성질 모두를 나타내주는 파라미터다. Small-world와 scale-free를 나타내주는 망의 성질로 군집계수, 평균 최단거리 그리고 power-law 상수를 이용하였다. 본 연구에서 제안한 방법을 사용하면 small-world 망과 scale-free 망의 성질과 관계에 대한 보다 명확한 이해를 할 수 있다. 다양한 여러 예제들을 통하여 두 개의 입력 파라미터들이 군집계수, 평균 최단거리 그리고 power-law 상수에 미치는 영향을 검증하였다. 이를 통해 어떠한 입력 파라미터들의 조합이 small-world 망, scale-free 망 혹은 두 개의 성질을 모두 갖는 망을 생성 할 수 있는지를 조사하였다.

To understand and analyze SNS(Social Network Service) two important classes of networks, small-world and scale-free networks have gained a lot of research interests. In this study, a generalized network generation method is developed, which can produce small-world network, scale-free network, or network with the properties of both small-world and scale-free by controlling two input parameters. By tuning one parameter we can represent the small-world property and by tuning the other one we can represent both scale-free and small-world properties. For the network measures to represent small-world and scale-free properties clustering coefficient, average shortest path distance and power-law property are used. Using the model proposed in this study we can have more clear understanding about relationships between small-world network and scale-free network. Using numerical examples we have verified the effects of two parameters on clustering coefficient, average shortest path distance and power-law property. Through this investigation it can be shown that small-world network, scale-free network or both can be generated by tuning two input parameters properly.

키워드

참고문헌

  1. X. F. Wang and G. Chen, "Complex network: small-world, scale-free and beyond," IEEE Cir. Syst. Mag., vol. 3, no. 1, pp. 6-20, Sept. 2003.
  2. D. I. Oh and K. W. Lee, "Study on the characteristics of the korea internet AS-level topology using node degree and node connectivity metrics," J. KICS, vol. 38, no. 6, pp. 417-426, Jun. 2013.
  3. P. J. Tighe, et al., "The operating room: It's a small-world(and scale-free networks) after all," J. INSNA, vol. 34, no. 1&2, Dec. 2014.
  4. D. Magoni and J. J. Pansiot, "Influence of network topology on protocol simulation," IEEE ICN, vol. 2093, pp. 762-770, Jul. 2001.
  5. P. Erdos and A. Renyl, "On random graph," Publicationes Mathematicae, vol. 6, pp. 290-297, 1959.
  6. J. Watts and S. H. Strogatz, "Collective dynamics of small-world," Nature, vol. 393, no. 6684, pp. 440-442, Jun. 1998. https://doi.org/10.1038/30918
  7. R. D. Caux, et al., "Dynamic, small-world, social network generation through local agent interactions," Complexity, vol. 19, no. 6, pp. 44-53, Jul. 2014. https://doi.org/10.1002/cplx.21528
  8. S. Wang, et al., "Dynamic analysis of biochemical network using complex network method," Thermal Sci., vol. 19, no. 4, pp. 1249-1253, 2015. https://doi.org/10.2298/TSCI1504249W
  9. D. I. Oh and K. W. Lee, "Analysis of korea internet AS-level topology," J. KICS, vol. 37, no. 10, pp. 901-911, Oct. 2012.
  10. H. Lee, "The power of power law: a view from VOD service," J. KICS, vol. 38, no. 8, pp. 607-614, Aug. 2013.
  11. M. Faloutsos, et al., "On power-law relationship of the internet topology," ACM SIGCOMM, vol. 29, no. 4, pp. 251-262, Oct. 1999. https://doi.org/10.1145/316194.316229
  12. H. Tangmunarunkit, et al., "Network topology generators: degree-based vs structural," ACM SIGCOMM, vol. 32, no. 4, pp. 147-159, Aug. 2002. https://doi.org/10.1145/964725.633040
  13. D. Barmpoutis and R. M. Murray, Networks with the smallest average distance and the largest average clustering(2010), Retrieved Jul. 21, 2016, from http://arxiv.org/abs/1007.4031.
  14. A. Barabasi and R. Albert, "Emergence of scaling in random networks, science," AAAS, vol. 286, no. 5439, pp. 509-512, Oct. 1999.
  15. C. Dangalchev, "Generation models for scale-free networks," Physica A, vol. 338, no. 3-4, pp. 659-671, Jul. 2004. https://doi.org/10.1016/j.physa.2004.01.056
  16. P. L. Krapivsky, S. Redner, and F. Leyvraz, "Connectivity of growing random networks," Phys. Rev. Lett., vol. 85, no. 21, Nov. 2000.
  17. E. Ravasz and Barabasi, "Hierarchical organization in complex networks," Phys. Rev. E, vol. 67, no. 2, Feb. 2003.
  18. G. Caldarelli, et al., "Scale-free networks from varying vertex intrinsic fitness," Phys. Rev. Lett., vol. 89, no. 25, Dec. 2002.
  19. D. Krioukov, "Hyperbolic geometry of complex networks," Phys. Rev. E, vol. 82, no. 3, pp. 036106, Sept. 2010. https://doi.org/10.1103/PhysRevE.82.036106