References
- Drucker, H. (1997), Improving regressors using boosting techniques, Proceedings of the 14th International Conference of Machine Learning.
- Freund, Y. and Schapire, R. E. (1997), A decision-theoretic generalization of on-line learning and an application to boosting, Journal of computer and system sciences, 55(1), 119-139. https://doi.org/10.1006/jcss.1997.1504
- Gao, F., Kou, P., Gao, L., and Guan, X. (2013), Boosting regression methods based on a geometric conversion approach : using SVMs base learners, Neurocomputing, 113(3), 67-87. https://doi.org/10.1016/j.neucom.2013.01.031
- Jin, R., Chen, W., and Simpson, T. W. (2001), Comparative Studies of Metamodeling Techniques under Multiple Modeling Criteria, Structural and Multidisciplinary Optimization, 23(1), 1-13. https://doi.org/10.1007/s00158-001-0160-4
- Kodiyalam, S., Yang, R. J., and Gu, L. (2004), High-Performance Computing and Surrogate Modeling for Rapid Visualization with Multidisciplinary Optimization, AIAA Journal, 42(11), 2347-2354. https://doi.org/10.2514/1.1997
- Madsen, K. and Zilinskas, J. (2000), Testing branch-and-bound methods for global optimization, IMM technical report, Technical University of Denmark.
- Sasena, M. J. (2002), Flexibility and Efficiency Enhancement for Constrained Global Design Optimization with Kriging Approximations, PhD thesis, University of Michigan.
- Park, C. I., Kim, Y. D., Kim, J. S., Song, J. W., and Choi, H. S. (2011), Data Mining with R, Kyowoosa.
- Powell, M. J. D. (1987), Radial Basis Functions for Multivariable Interpolation : A review, Oxford University Press, 143-167.
- Shrestha, D. L. and Solomatine, D. P. (2006), Experiments with Ada Boost.RT : an improved boosting scheme for regression, Neural computation, 18(7), 1678-1710. https://doi.org/10.1162/neco.2006.18.7.1678
- Simpson, T. W., Toropov, V., Balabanov, V., and Viana, F. A. C. (2008), Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization : A Review of How Far We Have Come-or Not, 12th AIAA/ISSMO Multidisciplinary and Optimization Conference.
- Solomatine, D. P. and Shrestha, D. L. (2004), AdaBoost.RT : a boosting algorithm for regression problems, Proceedings of the International Joint Conference on Neural Networks.
- Wang, G. G. and Shan, S. (2007), Review of Metamodeling Techniques in Support of Engineering Design Optimization, Journal of Mechanical Design, 129(4), 370-380. https://doi.org/10.1115/1.2429697