References
- J. Yan, Q. Wang, T. Wei, and Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater., 4, 1300816-1300859 (2014). https://doi.org/10.1002/aenm.201300816
- Y. Gogotsi, Energy storage wrapped up, Nature, 509, 568-570 (2014). https://doi.org/10.1038/509568a
-
J.-M. Jeong, K. G. Lee, S.-J. Chang, J. W. Kim, Y.-K. Han, S. J. Lee, and B. G. Choi, Ultrathin sandwich-like
$MoS_2$ @N-doped carbon nanosheets for anodes of lithium ion batteries, Nanoscale, 7, 324-329 (2015). https://doi.org/10.1039/C4NR06215A - J.-K. Sun, E.-H. Um, and C.-T. Lee, Electrochemical characteristics of the activated carbon electrode modified with the microwave radiation in the electric double layer capacitor, Appl. Chem. Eng., 21, 11-17 (2010).
- R.-G. Oh, J.-E. Hong, W.-G. Yang, and K.-S. Ryu, Study of lithium ion capacitors using carbonaceous electrode utilized for anode in lithium ion batteries, Appl. Chem. Eng., 24, 489-548 (2013).
- J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y.-S. Lee, Preparation and electrochemical characterization of activated carbon electrode by amino-fluorination, Appl. Chem. Eng., 22, 405-410 (2011).
-
M. Yang, S. B. Hong, and B. G. Choi, Hierarchical core/shell structure of
$MnO_2$ @polyaniline composites grown on carbon fiber paper for application in pseudocapacitors, Phys. Chem. Chem. Phys., 17, 29874-29879 (2015). https://doi.org/10.1039/C5CP04761G - S. Zhang and N. Pan, Supercapacitors performance evaluation, Adv. Energy Mater., 5, 1401401-1401420 (2015). https://doi.org/10.1002/aenm.201401401
- K. Naoi, S. Ishimoto, J.-I. Miyamoto, and W. Naoi, Second generation 'nanohybrid supercapacitor': evolution of capacitive energy storage devices, Energy Environ. Sci., 5, 9363-9373 (2012). https://doi.org/10.1039/c2ee21675b
-
M. Acerce, D. Voiry, and M. Chhowalla, Metallic 1T phase
$MoS_2$ nanosheets as supercapacitor electrode materials. Nat. Nanotechnol., 10, 313-318 (2015). https://doi.org/10.1038/nnano.2015.40 - V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7, 1597-1614 (2014). https://doi.org/10.1039/c3ee44164d
- X. Zhao, B. M. Sanchez, P. J. Dobson, and P. S. Gran, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 3, 839-855 (2011). https://doi.org/10.1039/c0nr00594k
- V. Aravindan, J. Gnanaraj, Y.-S. Lee, and S. Madhavi, Insertion-type electrodes for nonaqueous Li-ion capacitors, Chem. Rev., 144, 11619-11635 (2014).
- F. Wang, S. Xiao, Y. Hou, C. Hu, L. Liu, and Y. Wu, Electrode materials for aqueous asymmetric supercapacitors, RSC Adv., 3, 13059-13084 (2013). https://doi.org/10.1039/c3ra23466e
- B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, and Y. S. Huh, 3D macroporous graphene frameworks for supercapacitors with high energy and power densities, ACS Nano, 6, 4020-4028 (2012). https://doi.org/10.1021/nn3003345
- M. Yang, K. G. Lee, S. J. Lee, S. B. Lee, Y.-K. Han, and B. G. Choi, Three-dimensional expanded graphene-metal oxide film via solid-state microwave irradiation for aqueous asymmetric supercapacitors, ACS Appl. Mater. Interfaces, 7, 22364-22371 (2015). https://doi.org/10.1021/acsami.5b06187
- H. Chen, S. Zhou, and L. Wu, Porous nickel hydroxide-manganese dioxide-reduced graphene oxide ternary hybrid spheres as excellent supercapacitor electrode materials, ACS Appl. Mater. Interfaces, 6, 8621-8630 (2014). https://doi.org/10.1021/am5014375
- J. Zhang and J. W. Lee, Supercapacitor electrodes derived from carbon dioxide, ACS Sustainable Chem. Eng., 2, 735-740 (2014). https://doi.org/10.1021/sc400414r
- S. Ye, J. Feng, and P. Wu, Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode, ACS Appl. Mater. Interfaces, 5, 7122-7129 (2013). https://doi.org/10.1021/am401458x
- W. Chen, R. B. Rakhi, L. Hu, X. Xie, Y. Cui, and H. N. Alshareef, High-performance nanostructured supercapacitors on a sponge, Nano. Lett., 11, 5165-5172 (2011). https://doi.org/10.1021/nl2023433
- W. S. Hummers and R. E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
- B. G. Choi and H. S. Park, Controlling size, amount, and crystalline structure of nanoparticles deposited on graphenes for highly efficient energy conversion and storage, ChemSusChem., 5, 709-715 (2012). https://doi.org/10.1002/cssc.201100565
- B. G. Choi, H. Park, T. J. Park, M. H. Yang, J. S. Kim, S.-Y. Jang, N. S. Heo, S. Y. Lee, J. Kong, and W. H. Hong, Solution chemistry of self-assembled graphene nanohybrids for high-performance flexible biosensors, ACS Nano, 4, 2910-2918 (2010). https://doi.org/10.1021/nn100145x
- W. Wei, X. Cui, W. Chen, and D. G. Ivey, Mananese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev., 40, 1697-1721 (2011). https://doi.org/10.1039/C0CS00127A