DOI QR코드

DOI QR Code

Synthesis and Characterization of Pyridinium Dinitramide Salt

피리디니움 디나이트라아마이드염의 합성과 특성연구

  • Kim, Wooram (Department of Applied Environmental Science, Kyung Hee University) ;
  • Kwon, Younja (Department of Applied Environmental Science, Kyung Hee University) ;
  • Jo, Youngmin (Department of Applied Environmental Science, Kyung Hee University)
  • 김우람 (경희대학교 환경응용과학과) ;
  • 권윤자 (경희대학교 환경응용과학과) ;
  • 조영민 (경희대학교 환경응용과학과)
  • Received : 2016.05.19
  • Accepted : 2016.06.23
  • Published : 2016.08.10

Abstract

A new solid oxidizer, pyridinium dinitramide (Py-DN) is a low toxic energetic material which can be utilized as a HPGP (high performance green propellant). In this work, Py-DN was synthesized using various starting materials including potassium sulfamate, pyridine hydrochloride, strong nitric acid and sulfuric acid. Physical and chemical properties of the Py-DN were characterized using UV-Vis, FT-IR and a thermal analyzer and their properties were compared to those of previously prepared salts including ammonium dinitramide[ADN, $NH_4N(NO_2)_2$] and guanidine dinitramide[GDN, $NH_2C(NH_2)NH_2N(NO_2)_2$] in our lab. Endothermic and exothermic decomposition temperatures of Py-DN were $77.4^{\circ}C$ and $144.7^{\circ}C$, respectively. The combustion caloric value was 1739 J/g, which is thermally more sensitive than that of conventional dinitramides. It may enable to lower the decomposition temperature, which can reduce preheating temperature required for satellite thruster applications.

새로운 고체산화제 화합물인 pyridinium dinitramide (Py-DN)는 환경 및 인체에 독성이 적은 비염소계의 에너지물질로서 고체 추진제 뿐만 아니라 단일계 추진제로 활용이 가능한 high performance green propellant (HPGP) 물질이다. 합성반응은 술팜산칼륨(potassium sulfamate, $NH_2SO_3K$)을 출발물질로 시작하였으며, 합성된 Py-DN의 화학적인 구조특성을 적외선분광법과 가시광선-자외선분광법으로 관찰하였다. 또한, 유사한 물성의 친환경 고체산화제인 ammonium dinitramide[ADN, $NH_4N(NO_2)_2$]와 guanidine dinitramide[GDN, $NH_2C(NH_2)NH_2N(NO_2)_2$]의 열특성을 TG/DSC로 분석하여 상대 비교하였다. 본 연구에서 합성한 Py-DN염의 흡열온도는 $77.4^{\circ}C$, 분해온도는 $144.7^{\circ}C$, 발열에너지는 1739 J/g으로 기존의 DN계열 물질보다 열적 반응이 빠르므로 분해온도가 상대적으로 낮아 단일계 추진제의 촉매 분해 시 촉매의 예열온도를 낮출 수 있어 로켓추력기의 연료로 활용할 경우, 낮은 분해온도 적용성에 장점이 있다.

Keywords

References

  1. A. S. Gohardani, J. Stanojev, A. Demairee, K. Anflo, M. Persson, N. Wingborg, and C. Nilsson, Green space propulsion: Opportunities and prospects, Prog. Aerosp. Sci., 71, 128-149 (2014). https://doi.org/10.1016/j.paerosci.2014.08.001
  2. K. M. abhay, Recent advances in development of eco-friendly solid composite propellants for rocket propulsion, Res. J. Chem. Environ., 14(3), 94-103 (2010).
  3. R. Martin, Green propellants, PhD Dissertation, Royal Institute of Technology, Stockholm, Sweden (2010).
  4. W. R. Kim, Y. J. Kwon, Y. M. Jo, and S. T. Jung, Synthesis of organic salt oxidizer, guanidine dinitramide, J. Korean Oil Chem. Soc., 31(3), 345-351 (2014). https://doi.org/10.12925/jkocs.2014.31.3.345
  5. D. Amariei, L. Courtheoux, S. Rossignol, and Y. Batonneau, Influence of the fuel on the thermal and catalytic decompositions of ionic liquid monopropellants, 41th AIAA Joint Propulsion Conference, July 10-13, Tucson USA (2005).
  6. X. K. Yang, K. Z. Xu, F. Q. Zhao, X. Yang, H. Wang, and J. R. Song, Thermal behavior, specific heat capacity and adiabatic time-to-explosion of GDN, Chem. Res. Chinese Universites, 25(1), 76-80 (2009).
  7. O. A. Luk'yanov, V. P. Gorelik, and V. A. Tartakovsky, Dinitramide and its salts, Russ. Chem. Bull., 44, 108-112 (1995). https://doi.org/10.1007/BF00696969
  8. A. Langlet, H. Ostmark, and N. Wingborg, Method of preparing dinitramidic acid and salts thereof, US Patent 5,976,483 (1999).
  9. C. Vorde and H. Skifs, Method of producing salts of dinitramidic acid, US Patent 7,981,393 B2 (2011).
  10. W. R. Kim, Y. J. Kwon, and Y. M. Jo, Enhancement of yield and purity of ADN by separation technic, Proceedings of Applied Chemistry for Engineering. April 30-May 2, Jeju, Korea (2014).
  11. J. Oliveria, M. Nagamachi, M. Diniz, E. Mattos, and R. Dutra, Assessment the synthesis routes conditions for obtaining ammonium dinitramide by the FT-IR, J. Aerosp. Technol. Manag., 3(3), 269-278 (2011). https://doi.org/10.5028/jatm.2011.03033311
  12. M. Katcka and T. Urbanski, Infrared absorption spectra of quaternary salts of pyridine, Bull. Pol. Acad. Sci. Chem., 12(9), 615-621 (1964).
  13. T. S. Jo, Synthesis and characterizations of pyridinium salts including poly(pyridinium salt)s and their applications, PhD Dissertation, University of Nevada, Las Vegas, USA (2012).
  14. S. Lobbeche, T. Keicher, H. Krause, and A. Pfeil, The new energetic material ammonium dinitramide and its thermal decomposition, Solid State Ionics, 101, 945-951 (1997).
  15. R. Yana, P. Thakre, and V. Yang, Thermal decomposition and combustion of ammonium dinitramide, Combust. Explos. Shock Waves, 41(6), 657-679 (2005). https://doi.org/10.1007/s10573-005-0079-y
  16. C. K. Kim, J. C. Yoo, and B. S. Min, Impact sensitivity of HTPE & HTPB propellants using friability test, J. Korean Soc. Propul. Eng., 15(1), 29-34 (2011).
  17. J. N. Kim, M. J. Kim, and B. S. Min, Synthesis and crystallization of hydrazinium nitroformate (HNF) as eco-friendly oxidizer, J. Korean Soc. Propul. Eng., 19(4), 69-76 (2015). https://doi.org/10.6108/KSPE.2015.19.4.069

Cited by

  1. 5 N Scale Preliminary Thruster Test with an ADN-based Monopropellant vol.22, pp.2, 2018, https://doi.org/10.6108/KSPE.2018.22.2.029
  2. 암모늄 디나이트라마이드염의 합성 및 액상연료화 연구 vol.30, pp.5, 2016, https://doi.org/10.14478/ace.2019.1060